ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Dopamine transporter interaction with blockers and transportable substrates: insights from kinetics study; pp. 418–425
PDF | https://doi.org/10.3176/proc.2023.4.07

Author
Vladimir Stepanov
Abstract

Competition kinetic analysis was performed to examine the interaction mechanism of the dopamine transporter with dopamine, (S)-amphetamine, and cocaine, which play a central role in drug abuse phenomena connected with the dopaminergic system. Efficient dopamine transporter inhibitor [3H]PE2I was used as a reporter ligand for this analysis as this compound initiates slow isomerization of the transporter–ligand complex and thus ensures reliable results of the filtration radioligand assay. It was shown that the three investigated compounds do not initiate slow isomerization of their complexes with the transporter, but their presence inhibits the isomerization step of the radioactive reporter ligand. Secondly, it was shown that (S)-amphetamine and dopamine do not interfere with the fast step of the inhibitor ligand binding, pointing to the formation of the ternary complex, including transporter protein, reporter ligand, and an unlabeled compound. This is possible if the two molecules bind to non-overlapping sites on the transporter. Binding of cocaine results in slightly improved binding of the reporter ligand, pointing to a positive allosteric interaction between these binding processes.

References

1. Nepal, B., Das, S., Reith, M. E. and Kortagere, S. Overview of the structure and function of the dopamine transporter and its protein interactions. Front. Physiol., 2023, 14(3), 1150355. 
https://doi.org/10.3389/fphys.2023.1150355

2. Reith, M. E. A., Kortagere, S., Wiers, C. E., Sun, H., Kurian, M. A., Galli, A. et al. The dopamine transporter gene SLC6A3: multidisease risks. Mol. Psychiatry, 2022, 27, 1031–1046. 
https://doi.org/10.1038/s41380-021-01341-5

3. Runyon, S. P. and Carroll, F. I. Dopamine transporter ligands: recent developments and therapeutic potential. Curr. Top. Med. Chem., 2006, 6(17), 1825–1843. 
https://doi.org/10.2174/156802606778249775

4. Newman, A. H., Ku, T., Jordan, C. J., Bonifazi, A. and Xi, Z.-X. New drugs, old targets: tweaking the dopamine system to treat psychostimulant use disorders. Annu. Rev. Pharmacol. Toxicol., 2021, 61, 609–628. 
https://doi.org/10.1146/annurev-pharmtox-030220-124205

5. Verma V. 2015. Classic studies on the interaction of cocaine and the dopamine transporter. Clin. Psychopharmacol. Neurosci., 31, 227–238. 
https://doi.org/10.9758/cpn.2015.13.3.227

6. Daberkow, D. P., Brown, H. D., Bunner, K. D., Kraniotis, S. A., Doellman, M. A., Ragozzino, M. E. et al. Amphetamine paradoxically augments exocytotic dopamine release and phasic dopamine signals. J. Neurosci., 2013, 33(2), 452–463. 
https://doi.org/10.1523/JNEUROSCI.2136-12.2013

7. Vaughan, R. A. and Foster, J. D. Mechanisms of dopamine transporter regulation in normal and disease states. Trends Pharmacol. Sci., 2013, 34(9), 489–496. 
https://doi.org/10.1016/j.tips.2013.07.005

8. Huang, X., Gu, H. H. and Zhan, C.-G. 2009. Mechanism for cocaine blocking the transport of dopamine: insights from molecular modeling and dynamics simulations. J. Phys. Chem. B, 2009, 113(45), 15057–15066. 
https://doi.org/10.1021/jp900963n

9. Penmatsa, A., Wang, K. H. and Gouaux, E. X-ray structures of Drosophila dopamine transporter in complex with ni­soxetine and reboxetine. Nat. Struct. Mol. Biol., 2015, 22, 506–508. 
https://doi.org/10.1038/nsmb.3029

10. Järv, J. Neurotoxic agents interacting with the muscarinic acetylcholine receptor. In Selective Neurotoxicity. Springer Study Edition (Herken, H. and Hucho, F., eds). Springer, Berlin, Heidelberg, 1994, 102, 659–680. 
https://doi.org/10.1007/978-3-642-85117-9_18

11. Strickland, S., Palmer, G. and Massey, V. Determination of dissociation constants and specific rate constants of enzyme–substrate (or protein–ligand) interactions from rapid reaction kinetic data. J. Biol. Chem., 1975, 250(11), 4048–4052. 
https://doi.org/10.1016/S0021-9258(19)41384-7

12. Järv, J. and Oras, A. Similar dynamics of G-protein coupled receptors molecules in response to antagonist binding. Neurosci. Lett., 2005, 373(2), 150–152. 
https://doi.org/10.1016/j.neulet.2004.10.003

13. Stepanov, V. and Järv, J. Slow isomerization step in the interaction between mouse dopamine transporter and dopa­mine re-uptake inhibitor N-(3-iodoprop-2E-enyl)-2β-carbo-[3H]methoxy-3β-(4'-methylphenyl)nortropane. Neurosci. Lett., 2006, 410(3), 218–221. 
https://doi.org/10.1016/j.neulet.2006.10.007

14. Page, G., Chalon, S., Emond, P., Maloteaux, J.-M. and Hermans, E. Pharmacological characterisation of (E)-N-(3-iodoprop-2-enyl)-2β-carbomethoxy-3β-(4'-methylphenyl)nortropane (PE2I) binding to the rat neuronal dopa­mine trans­porter expressed in COS cells. Neurochem. Int., 2002, 40(2), 105–113. 
https://doi.org/10.1016/s0197-0186(01)00086-9

15. Bylund, D. B. and Toews, M. L. Radioligand binding methods for membrane preparations and intact cells. In Receptor Signal Transduction Protocols. Methods in Molecular Biology (Willars, G. and Challiss, R., eds). Humana Press, Totowa, NJ, 2011, 746, 135–164. 
https://doi.org/10.1007/978-1-61779-126-0_8

16. Stepanov, V., Schou, M., Järv, J. and Halldin, C. Synthesis of 3H-labeled N-(3-iodoprop-2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane (PE2I) and its interaction with mice striatal membrane fragments. Appl. Radiat. Isot., 2007, 65(3), 293–300. 
https://doi.org/10.1016/j.apradiso.2006.09.003

17. Craig, D. A. The Cheng–Prusoff relationship: something lost in the translation. Trends Pharmacol. Sci., 1993, 14(3), 89–91. 
https://doi.org/10.1016/0165-6147(93)90070-z

18. Kukk, S. and Järv, J. Differentiating between drugs with short and long residence times. Med. Chem. Commun., 2016, 7, 1654–1656. 
https://doi.org/10.1039/C6MD00269B

Back to Issue