ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Potential uses of N-methylmorpholine N-oxide for the treatment of agricultural waste biomass; pp. 176–183
PDF | https://doi.org/10.3176/proc.2023.2.07

Authors
Agnese Ābele, Ritvars Bērziņš, Rita Bērziņa, Remo Merijs-Meri, Madara Žiganova, Jānis Zicāns
Abstract

Lignocellulosic fibers have been used in polymer composites for a long time but their treatment process is still challenging due to insufficient efficiency and environmental impact. This research analyses the influence of N-methylmorpholine N-oxide (NMMO) on the structure and properties of three types of lignocellulosic fibers – sweet clover (SCS), buckwheat (BS) and rapeseed straws (RS). The fibers were treated with an NMMO solution at 90 °C for different periods of time (80 min, 180 min, 300 min and 30 h). It was detected that after treatment in a dilute NMMO solution, non-cellulosic substances were removed, the morphology and aspect ratio were affected and the fibers were characterized by higher thermal stability. However, the results show that before using NMMO for the production of microfibers, additional research on the pretreatment process will be necessary because an insufficient aspect ratio value and surface morphology were obtained. The current research shows that it is not economically feasible to process fibers using NMMO for the production of reinforcement for polymer composites.

 

References

1. Textile Technology. Stable world natural fiber production in 2022. 
https://www.textiletechnology.net/fibers/news/dnfi-stable-world-natural-fiber-production-in-2022-32691 (accessed 2022-09-01).

2. Bechtold, T. and Pham, T. Textile Chemistry. De Gruyter, 2019.
https://doi.org/10.1515/9783110549898

3. Hasan, A., Rabbi, M. S. and Billah, Md. M. Making the lignocellulosic fibers chemically compatible for composite: a comprehensive review. Clean. Mater., 2022, 4, 100078.
https://doi.org/10.1016/j.clema.2022.100078

4. Boey, J. Y., Yusoff, S. B. and Tay, G. S. A review on the enhancement of composite’s interface properties through biological treatment of natural fibre/lignocellulosic material. Polym. PolymCompos., 2022, 30, 1–15.
https://doi.org/10.1177/09673911221103600

5. Žiganova, M., Ābele, A., Iesalniece, Z. and Merijs-Meri, R. Mercerization of agricultural waste: sweet clover, buckwheat and rapeseed straws. Fibers, 2022, 10(10), 83. 
https://doi.org/10.3390/fib10100083

6. Oliva, A., Tan, L. C., Papirio, S., Esposito, G. and Lens, P. N. L. Use of N-methylmorpholine N-oxide (NMMO) pretreatment to enhance the bioconversion of lignocellulosic residues to methane. Biomass Convers. Biorefin., 2022. 
https://doi.org/10.1007/s13399-022-03173-x

7. Shabbir, M. and Mohammad, F. 7-Sustainable production of regenerated cellulosic fibres. In Sustainable Fibres and Textiles. The Textile Institute Book Series (Muthu, S. S., ed.). Woodhead Publishing, Sawston, 2017, 171–189. 
https://doi.org/10.1016/B978-0-08-102041-8.00007-X

8. Jiang, X., Bai, Y., Chen, X. and Liu, W. A review on raw materials, commercial production and properties of lyocell fiber. J. Bioresour. Bioprod., 2020, 5(1), 16–25. 
https://doi.org/10.1016/j.jobab.2020.03.002

9. Wikandari, R., Millati, R. and Taherzadeh, M. J. Pretreatment of lignocelluloses with solvent N-methylmorpholine N-oxide. In Biomass Fractionation Technologies for a Ligno­cel­lulosic Feedstock Based Biorefinery (Mussatto, S. I., ed.). Elsevier, 2016, 255–280. 
https://doi.org/10.1016/B978-0-12-802323-5.00012-8

10. Rosenau, T., Potthast, A., Adorjan, I., Hofinger, A., Sixta, H., Firgo, H. and Kosma, P. Cellulose solutions in N-methyl­morpholine-N-oxide (NMMO) – degradation processes and stabilizers. Cellulose, 2002, 9, 283–291. 
https://doi.org/10.1023/A:1021127423041

11. Puke, M., Godina, D., Kirpluks, M., Rizikovs, J. and Brazdausks, P. Residual birch wood lignocellulose after 2-furaldehyde production as a potential feedstock for obtaining fiber. Polymers, 2021, 13(11), 1816. 
https://doi.org/10.3390/polym13111816

12. Chen, H. Chemical composition and structure of natural lignocellulose. In Biotechnology of Lignocellulose. Springer, Dordrecht, 2014, 25–71. 
https://doi.org/10.1007/978-94-007-6898-7_2

13. Abbass, A., Paiva, M. C., Oliveira, D. V., Lourenço, P. B. and Fangueiro, R. Insight into the effects of solvent treatment of natural fibers prior to structural composite casting: chemical, physical and mechanical evaluation. Fibers, 2021, 9(9), 54. 
https://doi.org/10.3390/fib9090054

14. Zhuang, J., Li, M., Pu, Y., Ragauskas, A. J. and Yoo, C. G. Observation of potential contaminants in processed biomass using Fourier transform infrared spectroscopy. Appl. Sci., 2020, 10(12), 4345. 
https://doi.org/10.3390/app10124345

15. Ibrahim, M. N. M., Iqbal, A., Shen, C. C., Bhawani, S. A. and Adam, F. Synthesis of lignin based composites of TiO2 for potential application as radical scavengers in sunscreen formulation. BMC Chem., 2019, 13(17). 
https://doi.org/10.1186/s13065-019-0537-3

16. Zhou, C., Jiang, W., Cheng, Q. and Via, B. K. 2015. Multivariate calibration and model integrity for wood chemistry using Fourier transform infrared spectroscopy. J. Anal. Methods Chem., 2015, 2015, 429846. 
https://doi.org/10.1155/2015/429846

17. Salim, R. Md., Asik, J. and Sarjadi, M. S. Chemical func­tional groups of extractives, cellulose and lignin extracted from native Leucaena leucocephalabark. Wood Sci. Technol., 2021, 55, 295–313. 
https://doi.org10.1007/s00226-020-01258-2

18. Poletto, M., Ornaghi Júnior, H. L. and Zattera, A. J. Native cellulose: structure, characterization and thermal properties. Materials, 2014, 7(9), 6105–6119. 
https://doi.org/10.3390/ma7096105

19. Poletto, M., Ornaghi Júnior, H. L. and Zattera, A. J. Thermal decomposition of natural fibers: kinetics and degradation mechanisms. In Reactions and Mechanisms in Thermal Analysis of Advanced Materials (Tiwari, A. and Raj, B., eds). Scrivener Publishing, Beverly, MA, 2015, 515–545. 
https://doi.org/10.1002/9781119117711.ch21

20. Cui, J., Lu, P., Li, Y., Xu, K., Li, Y., Shen, H. et al. The flexible and transparent film heaters based on regenerated cellulose and carbon nanotubes. Front.Energy Res., 2022, 10, 879257.
https://doi.org/10.3389/fenrg.2022.879257

21. Suryanto, H., Sukarni, S., Pradana, Y., Yanuhar, U. and Witono, K. Effect of mercerization on properties of mendong (Fimbristylis globulosa) fiber.Songklanakarin J. Sci. Technol., 2019, 41(3), 624–630. 
https://doi.org/10.14456/sjst-psu.2019.73

22. Lee, C. H., Khalina, A. and Lee, S. H. Importance of interfacial adhesion condition on characterization of plant-fiber-reinforced polymer composites: a review. Polymers, 2021, 13, 438. 
https://doi.org/10.3390/polym13030438

Back to Issue