ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Toxicity assessment of Cedrus deodara oil compared to carbosulfan for Tenebrio molitor (Coleoptera: Tenebrionidae) adults; pp. 167–175
PDF | https://doi.org/10.3176/proc.2023.2.02

Authors
Islam Dad Buneri, Masarrat Yousuf, Mohammad Attaullah, Muhammad Amin, José C. Zanuncio, Hazrat Ali, Wali Khan, Muhammad Ali, Naveed Ahmad, Gaber El-Saber Batiha, Rashid Khan, Andrey E. Krauklis, Hani Amir Aouissi, Juris Burlakovs, Roy Hendroko Setyobudi, Luqman Ali Shah, Muhammad Zahoor, Muhammad Naeem, Mohamad Nor Azra
Abstract

Specific compounds extracted from plants can control insect pests. The objective of this study was to evaluate the toxicity of deodar oil (phytopesticide) to adult mealworms Tenebrio molitor (Coleoptera: Tenebrionidae) compared with carbosulfan (synthetic insecticide), which exibits cholinesterase (ChE), glutamic pyruvic transaminase (GPT), and glutamic oxaloacetic transaminase (GOT) activities. The insecticides were applied through feeding, and the LC50 (lethal concentration) was calculated using the Finney method. The LC50 of deodar oil was higher than that of carbosulfan. The doses of both deodar oil and carbosulfan inhibited the ChE activity (p > 0.05) and enhanced the GPT and GOT activities (p < 0.05) in mealworm adults. Alterations in the activity of these biomarkers indicated that deodar oil could effectively control adult mealworms,  being an environmentally low-impact method that can  replace the use of chemical products.

References

Abubakar, M. S., Abdurahman, E. M. and Haruna, A. K. 2000. The repellant and antifeedant properties of Cyperus articulatusagainst Tribolium castaneum Hbst. Phytother. Res.14(4), 281–283.
https://doi.org/10.1002/1099-1573(200006)14:4<281::AID-PTR568>3.0.CO;2-C

Amin, M., Yousuf, M., Ahmad, N., Attaullah, M., Ahmad, S., Zekker, I. et al. 2022. Application of alkaline phosphatase to assess the health of Oreochromis niloticus exposed to organophosphates and synthetic pyrethroid pesticides in vivo. JHazard., Toxic Radioact. Waste264.
https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000714

Azab, M. M., El-Lakwah, F. A., Abd-El Wahab, H., Khattab, M. M. and El-Ghanam, M. S. M. 2011. Impact of certain insecti­cides on enzymes activity of whitefly Bemisia tabaci (Genn.) and aphids Aphis gossypii (Glover) on cucumber plants. Ann. Agric. Sci. Moshtohor49(2), 191–199.

Buneri, I. D., Yousuf, M., Attaullah, M., Khan, B. T. and Amin, M. 2018. Biochemical effects of deodar oil in comparison to imidacloprid and carbosulfan on pupae of mealworm Tenebrio molitor (Coleoptera: Tenebrionidae). J. Biodivers. Environ. Sci.12(3), 343–348.

Buneri, I. D., Yousuf, M., Attaullah, M., Afridi, S., Anjum, S. I., Rana, H. et al. 2019. A comparative toxic effect of Cedrus deodara oil on larval protein contents and its behavioral effect on larvae of mealworm beetle (Tenebrio molitor) (Coleoptera: Tenebrionidae). Saudi J. Biol. Sci.26(2), 281–285.
https://doi.org/10.1016/j.sjbs.2017.06.005

Chaudhary, A., Sharma, P., Nadda, G., Tewary, D. K. and Singh, B. 2011. Chemical composition and larvicidal activities of the Himalayan cedar, Cedrus deodara essential oil and its fractions against the diamondback moth, Plutella xylostellaJ. Insect Sci.11(1), 157.
https://doi.org/10.1673/031.011.15701

Cheng, W. X., Wang, J. J., Ding, W. and Zhao, Z. M. 2004. Inhibition kinetics on carboxylesterase and acetylcholines­terase of Liposcelis bostrychophila and Liposcelis ento­- mophila (Psocop., Liposcelididae) of two insecticides. J. Appl. Entomol.128, 292–297.
https://doi.org/10.1111/j.1439-0418.2004.00846.x

Devmurari, V. P. 2010. Antibacterial evaluation of ethanolic extract of Cedrus deodara wood. Arch. Appl. Sci. Res.2(2), 179–180.

Fegrouche, R., Kadiri, N., Ghailoule, D., Atay-Kadiri, Z. and  Lumaret, J. P. 2014. Environmental risk assessment of car­bosulfan on target and non-target beetles when used as white grub larvicide in the cork oak forest of Mamora (Morocco). Int. J. Pest Manag.60(1), 39–45.
https://doi.org/10.1080/09670874.2014.894217

Finney, D. J. 1971. Probit Analysis. 3rd ed. Cambridge University Press, Cambridge.

Gamble, J. S. 1922. A Manual of Indian Timbers. Sampson Low, Marston & Co. Ltd., London.

Heong, K. L., Tan, K. H., Garcia, C. P. F., Fabellar, L. T. and Lu, Z. 2011. Research Methods in Toxicology and Insecticide Resistance Monitoring of Rice Planthoppers. International Rice Research Institute (IRRI), Metro Manila.

Jilani, G. and Amir, P. 1987. Economics of neem in reducing wheat storage losses: policy implications. Tech. Bull.2.

Kanvil, S., Jilani, G. and Rehman, J. 2006. Repellency of ethanol extract of some indigenous plants against Tribolium cas­taneum (Herbst) (Coleoptera: Tenebrionidae) – III. Pak. J. Zool.39(1), 9–15.

Kaur, D., Kaur, G., Thind, J. and Singh, R. 2021. Efficacy of certain botanicals against melon fruit fly (Bactrocera cucurbitae) (Diptera: Tephritidae). Agriways9(1), 39–44.

Liu, Z. L. and Ho, S. H. 1999. Bioactivity of essential oil extracted from Evodia rutaecarpa Hook f. et Thomas against the grain storage insects, Sitophilus zeamais Motsch. and Tribolium castaneum (Herbst). J. Stored Prod. Res.35(4), 317–328.
https://doi.org/10.1016/S0022-474X(99)00015-6

Mahalingam, R., Ambikapathy, V., Panneerselvam, A. and Prince, L. 2011. Biological activities of some medicinal plants against Setophaeria rostrata causing seedling blight disease in sugarcane. Asian J. Plant Sci. Res.1(2), 92–95.

Makhaik, M., Naik, S. N. and Tewary, D. K. 2005. Evaluation of anti-mosquito properties of essential oils. J. Sci. Ind. Res.64, 129–133.  

Malarvizhi, A., Kavitha, C., Saravanan, M. and Ramesh, M. 2012. Carbamazepine (CBZ) induced enzymatic stress in gill, liver and muscle of a common carp, Cyprinus carpioJ. King Saud Univ. Sci.24(2), 179–186.
https://doi.org/10.1016/j.jksus.2011.01.001

Mead-Hala, M. I. M. 2000. New approaches in the control of legumes aphids, Aphis craccivora Koch (Homoptera: Aphididae). MSc thesis. Ain Shams University, Egypt.

Meera, S. and Mann., A. K. 2002. Effect of smoke treatment of plant Peganum harmala on the mortality of Callosobruchus chinensis Linnaeus. Insect Environ.8(3), 108–109.

Menozzi, P., Shi, M. A., Lougarre, A., Tang, Z. H. and Fournier, D. 2004. Mutations of acetylcholinesterase which confer insec­ticide resistance in Drosophila melanogaster pop­ulations. BMC Evol. Biol.4(4), 1–7.    
https://doi.org/10.1186/1471-2148-4-4

Morales-Ramos, J. A., Rojas, M. G., Shapiro-Ilan, D. and Tedders, W. L. 2011. Self-selection of two diet components by Tenebrio molitor (Coleoptera: Tenebrionidae) larvae and its impact on fitness. Environ. Entomol.40(5), 1285–1294.  
https://doi.org/10.1603/EN10239

Namba, T., Nolte, C. T., Jackrel, J. and Grob, D. 1971. Poisoning due to organophosphate insecticides: acute and chronic manifestations. Am. J. Med.50(4), 475–492.
https://doi.org/10.1016/0002-9343(71)90337-8

Naqvi, S. N. H., Nurulain, S. M., Azmi, M. A. and Asdaque, T. 1989. Effect of neem fractions and malathion against whiteflies, Aleurobus barodensis on brinjal crop (Solanum melongena). Sarhad J. Agric., 5(1), 25–28. 

Nurulain, S. M., Naqvi, S. N. H. and Tabassum, R. 1994. Synergistic formulation of a neem product and its IGR effect on Musca domestica L. (PCSIR strains). Pak. J. Entomol. Karachi9(1–2), 43–50.

Nwani, C. D., Agrawal, N. D., Raghuvanshi, S., Jaswal, A., Shrivastava, S., Sinha, N. et al. 2015. Toxicological effects of carbosulfan in rats: Antioxidant, enzymological, bio­chemical, and hematological responses. Toxicol. Ind. Health32(7), 1335–1343.
https://doi.org/10.1177/0748233714564243

Plata-Rueda, A., Martínez, L. C., Dos Santos, M. H., Fernandes, F. L., Wilcken, C. F., Soares, M. A. and  Zanuncio, J. C. 2017. Insecticidal activity of garlic essential oil and their constituents against the mealworm beetle, Tenebrio molitor Linnaeus (Coleoptera: Tenebrionidae). Sci. Rep.7, 46406.
https://doi.org/10.1038/srep46406

Raguraman, S. and Singh, D. 1997. Biopotentials of Azadirachta indica and Cedrus deodara oils on Callosobruchus chinensisInt. J. Pharmacogn.35(5), 344–348.
https://doi.org/10.1080/09251619708951280

Rahuman, A. A., Bagavan, A., Kamaraj, C., Vadivelu, M., Zahir, A. A., Elango, G. and Pandiyan, G. 2009. Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol. Res.104(3), 637–643.
https://doi.org/10.1007/s00436-008-1240-9

Ramos-Elorduy, J., Ávila, G. E., Rocha, H. A. and Pino, J. M. 2002. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol.95, 214–220.
https://doi.org/10.1603/0022-0493-95.1.214

Rana, H., Khan, M. F., Akbar, M. F., Tahir, H. M., Khan, M. S. and Ahmed, Z. 2015. Cholinesterase inhibition effects of Azadirachta indica A. Juss fresh leave extract and its effects on Musca domestica L. larval mortality, pupation, adult emergence, fecundity and fertility. Int. J. Agric. Appl. Sci.7, 28–36. 

Rao, I. G. and Singh, D. K. 2002. Toxic effect of single and binary treatments of synthetic and plant-derived mollusci­cides against Achatina fulicaJ. Appl. Toxicol.22(3), 211–215.
https://doi.org/10.1002/jat.850

Rao, I. G., Singh, A., Singh, V. K. and Singh, D. K. 2003. Effect of single and binary combinations of plant-derived mol­luscicides on different enzyme activities in the nervous tissue of Achatina fulica. J. Appl. Toxicol.23(1), 19–22.
https://doi.org/10.1002/jat.874

Reitman, S. and Frankel, S. 1957. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am. J. Clin. Pathol.28(1), 56–63.
https://doi.org/10.1093/ajcp/28.1.56

Sentosa, Y., Andjani, H. N., Yati, K., Jufri, M., Haryuni, H. and Gozan, M. 2019. Determination of LC50 value of Nicotiana tabacum L. extract against Tenebrio molitor and Zophobas morio larvae. AIP Conf. Proc. 2193(1), 030021. 
https://doi.org/10.1063/1.5139358

Singh, D. and Agarwal, S. K. 1988. Himachalol and β-hima­chalene: insecticidal principles of Himalayan cedarwood oil. J. Chem. Ecol.14, 1145–1151.
https://doi.org/10.1007/BF01019342

Singh, D. and Rao, S. M. 1985. Toxicity of cedarwood oil against pulse beetle, Callosobruchus chinensis Linn. Indian Perfum.29(4), 201–204.

Singh, A. and Singh, D. K. 2003. Enzyme inhibition by herbal molluscicides in the nervous tissue of the snail Lymnaea acuminate. J. Sci. Islam. Repub. Iran14, 227–233.

Singh, D., Rao, S. M. and Tripathi, A. K. 1984. Cedarwood oil as a potential insecticidal agent against mosquitoes. Natur­wissenschaften71, 265–266.
https://doi.org/10.1007/BF00441340

Singh, D., Siddiqui, M. S. and Sharma, S. 1989. Reproduction retardant and fumigant properties in essential oils against rice weevil (Coleoptera: Curculionidae) in stored wheat. J. Econ. Entomol.82(3), 727–732.
https://doi.org/10.1093/jee/82.3.727

Spochacz, M., Szymczak, M., Chowański, S., Bufo, S. A. and Adamski, Z. 2020. Solanum nigrum fruit extract increases toxicity of fenitrothion – a synthetic insecticide, in the meal­worm beetle Tenebrio molitor larvae. Toxins12(10), 612.
https://doi.org/10.3390/toxins12100612

Tripathi, A. K., Prajapati, V., Aggarwal, K. K., Khanuja, S. P. S. and Kumar, S. 2000. Repellency and toxicity of oil from Artemisia annua to certain stored-product beetles. J. Econ. Entomol.93(1), 43–47.
https://doi.org/10.1603/0022-0493-93.1.43

Umoetok, S. B. A. 2000. The toxicity of sweet flag (Acorus calamus) to three major insect pests of stored products. Glob. J. Pure Appl. Sci.6(2), 187–189.
https://doi.org/10.4314/gjpas.v6i2.16105

Yousuf, M. J., Anjum, S. I. and Faiz, R. 2015. Toxicological attributes of plant chemicals and their biochemical impacts on cholinesterase and protein levels in relation with conventional insecticides against mosquito larvae of Karachi city. Toxicol. Environ. Chem.96(7), 1088–1095.
https://doi.org/10.1080/02772248.2015.1008789

Zaman, M. 1989. Effect of foliar insecticides against thrips on onion in Peshawar, Pakistan. Trop. Pest Manag.35, 332–333.
https://doi.org/10.1080/09670878909371393

Back to Issue