eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Buckling of the woven fabric inside an embroidered element; pp. 187–192

Full article in PDF format | doi: 10.3176/proc.2013.3.04

Svetlana Radavičienė, Milda Jucienė


Today technologies of embroidery are applied for the production of composite materials, intelligent (smart) clothing or textiles as well as in medicine. In the modern production of garments, embroidery fulfils decorative, informative, and safety functions. The possible best quality of the embroidered element has to be ensured. The woven fabric covered with embroidery threads is compressed and buckled between the needle pricks. Such effects may result not only in relaxation processes in the embroidery threads after the embroidery process but may also affect the properties of the embroidered material. The behaviour of the material inside an embroidered element may result in the thickness of the material and influence its structure, bending rigidity, formability, shear stiffness, etc. Our aim was to investigate the buckling of materials with different physical properties inside embroidered elements. For investigations woven fabrics with different structure and mechanical properties and polyester embroidery threads were selected. The digital design (width 6 mm, length 60 mm) was generated applying Wilcom Embroidery Software 2006 Software Package. An automated embroidery machine Barudan BEVT-Z901CA was used to prepare the specimens. Embroidering process speed of 700 stitches per minute was applied. Six test specimens were embroidered in the warp and weft directions. The investigation showed that fabric structure indicators such as linear filling and linear porosity influence the formation of the height and shape of the buckling waves inside the embroidered element.


  1. Merritt, C. Electronic Textile-Based Sensors and Systems for Long-Term Health Monitoring. Doctoral Disserta­tion, North Carolina St. University, 2008.

  2. Michalak, M., Kazakevičius, V., Dudzinska, S., Kru­cinska, I., and Brazis, R. Textiles embroidered with split-rings as barriers against microwave radiation. Fibres Text. East. Eur., 2009, 17, 66–70.

  3. Taelman, J., Adriaensen, T., van der Horst, C., Linz, T., and Spaepen, A. Textile integrated contactless EMG sensing for stress analysis. In 29th Annual Inter­national Conference of the IEEE Engineering in Medicine and Biology Society EMBC, Lyon, France, August 2007, 3966–3969.

  4. Karamuk, Z. E. Embroidered Textiles for Medical Applica­tions: New Design Criteria with Respect to Structural Biocompatibility. Doctoral Thesis, Swiss Federal Institute of Technology, Zurich, 2001.

  5. Warrior, N. A., Rudd, C. D., and Gardner, S. P. Experi­mental studies of embroidery for the local reinforce­ment of composites structures: 1. Stress concentra­tions. Compos. Sci. Technol., 1999, 59(14), 2125–2137.

  6. Kannaian, T., Janarthanan, M., and Thilagavathi, G. An overview of electronics textiles. IE(I) Journal TX, 2010, 90, 9–15.

  7. Jucienė, M. and Dobilaitė, V. The effect of fabric prop­erties on seam pucker indicator. In The 5th Inter­national Textile, Clothing & Design Conference: Book of Proceeding. Dubrovnik, Croatija, 2010, 464–469.

  8. Strazdienė, E., Blaževič, P., Vegys, A., and Dap­kūnienė, K. New tendencies of wearable electronics application in smart clothing. Electronics and Electrical Engineering, 2007, 1, 21–23.

  9. Radavičienė, S. and Jucienė, M. Investigation of mech­anical properties of embroidery threads. In The 5th International Textile, Clothing & Design Con­ference: Book of Proceeding. Dubrovnik, Croatija, 2010, 494–499.

10. Klevaitytė, R. and Masteikaitė, V. Anisotropy of woven fabric deformation after stretching. Fibres Text. East. Eur., 2008, 16, 52–56.

11. Klevaitytė, R., Sacevičienė, V., and Masteikaitė, V. Investi­gation of fabrics tensile deformations. Material Science (Medžiagotyra), 2006, 12, 152–157.

12. Domskienė, J., Strazdienė, E., and Maladauskaitė, D. The peculiarities of textile behaviour under in-plane com­pression. In Baltic Textile & Leather: International Conference. Kaunas–Vilnius, Lithuania, 11–12 September 2003, 76–80.

13. Domskienė, J. and Strazdienė, E. The effect of bending rigidity upon fabric behaviour in-plane compression. Textil, 2005, 54, 255–259.

14. Alamdar-Yazdi, A. and Amirbayat, J. Evaluation of the basic low stress mechanical properties (bending, shear­ing and tensile). Int. J. Clothing Sci. Technol., 2000, 12, 311–330.

15. Naujokaitytė, L. and Strazdienė, E. Investigation of textile fabrics behaviour under compression. Material Science (Medžiagotyra), 2007, 13, 337–342.

16. Bekampienė, P. and Domskienė, J. Influence of stitching pattern on deformation behaviour of woven fabric during forming. Material Science (Medžiagotyra), 2010, 6, 226–230.

17. Chernenko, D. A. Systematization of Design Parameters for Automated Embroidery and Modeling of Deforma­tion System of “Fabric–Embroidery”. Doctoral Disserta­tion, State Technological University of Orel, Orel, 2006.

18. El Gholmy, S., Bondok, N., and El Geiheini, A. Optimiza­tion of embroidery design on denim fabrics. In The 5th International Textile, Clothing & Design Conference: Book of Proceeding. Dubrovnik, Croatija, 2010, 821–826.

19. LST ISO 3801:1998. Textiles. Woven Fabrics. Determina­tion of Mass per Unit Length and Mass per Unit Area.

20. LST EN 1049-2:1998. Textiles – Woven Fabrics – Con­struc­tion – Methods of Analysis – Part 2: Determina­tion of Number of Threads per Unit Length.

21. Dobilaitė, V. and Jucienė, M. The influence of mechanical properties of sewing threads on seam pucker. Int. J. Clothing Sci. Technol., 2006, 18, 335–345.

22. Amirbayat, J. and McLaren Miller, J. Order of magnitude of compressive energy of seams and its effect on seam pucker. Int. J. Clothing Sci. Technol., 1991, 3, 12–17.

Back to Issue