PUBLISHERS
 PUBLISHED SINCE 1952 proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
Algebra with ternary cyclic relations, representations and quark model; pp. 61–76
PDF | https://doi.org/10.3176/proc.2023.1.07

Authors
Viktor Abramov, Stefan Groote, Priit Lätt
Abstract

We propose a unital associative algebra, motivated by a generalization of the Pauli’s exclusion principle proposed for the quark model. The generators of this algebra satisfy the following relations: The sum of squares of all generators is equal to zero (binary relation) and the sum of cyclic permutations of the factors in any triple product of generators is equal to zero (ternary relations). We study the structure of this algebra and calculate the dimensions of spaces spanned by homogeneous monomials. We establish a relation between our algebra and the irreducible representations of the rotation group. In particular, we show that the 10-dimensional space spanned by triple monomials is the space of a double irreducible unitary representation of the rotation group. We use ternary q- and -commutators, where q, are primitive 3rd order roots of unity, to split the 10-dimensional space spanned by triple monomials into a direct sum of two 5-dimensional subspaces. We endow these subspaces with a Hermitian scalar product by means of an orthonormal basis of triple monomials. In each subspace, there is an irreducible unitary representation so(3) → su(5). We calculate the matrix of this representation. The structure of this matrix indicates a possible connection between our algebra and the Georgi–Glashow model.

References

1. Abramov, V., Kerner, R. and Le Roy, B. Hypersymmetry: A Z3-generalization of supersymmetry. J. Math. Phys., 1997, 38(3), 1650–1669.
https://doi.org/10.1063/1.531821

2. Abramov, V., Kerner, R. and Liivapuu, O. Algebras with ternary composition law combining Z2 and Z3 gradings. In Springer Proceedings in Mathematics and Statistics (Silvestrov, S., Malyarenko, A. and Rancic, M., eds). Springer, Cham, 2020, 13–45.
https://doi.org/10.1007/978-3-030-41850-2_2

3.Abramov, V. Ternary algebras associated with irreducible tensor representations of SO(3) and quark model. 2020. arXiv:2006.05237

4. Bagger, J. and Lambert, N. Modeling multiple M2’s. Phys. Rev., 2007, D75, 045020. arXiv:hep-th/0611108
https://doi.org/10.1103/PhysRevD.75.045020

5. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev., 2008, D77, 065008. arXiv:0711.0955 [hep-th]
https://doi.org/10.1103/PhysRevD.77.065008

6. Cantarini, N. and Kac, V. Classification of simple linearly compact n-Lie superalgebras. Commun. Math. Phys., 2010, 298, 833–853.
https://doi.org/10.1007/s00220-010-1049-0

7. Cherkis, S. and Sämann, C. Multiple M2-branes and generalized 3-Lie algebras. Phys. Rev. D, 2008, 78, 066019.
https://doi.org/10.1103/PhysRevD.78.066019

8. Croon, D., Gonzalo, T. E., Graf, L., Košnik, N. and White, G. GUT Physics in the Era of the LHC. Front. Phys., 2019.
https://doi.org/10.3389/fphy.2019.00076

9. Dzhumadildaev, A. S. Identities and derivations for Jacobian algebras, Contemp. Math., 2002, 315, 245–278.
https://doi.org/10.1090/conm/315/05484

10. Filippov, V. T. n-Lie algebras. Siberian Math. J., 1985, 26, 879–891.
https://doi.org/10.1007/BF00969110

11. Groote, S. and Saar, R. Group theory aspects of chaotic strings. In Proceedings of the Conference "QQQ12 – 3Quantum: Algebra, Geometry and Information" (Paal, E., ed.), Tallinn, Estonia, 10–13 July 2012. Institute of Physics Publishing, 2014.
https://iopscience.iop.org/article/10.1088/1742-6596/532/1/012006

12. Gelfand, I. M., Minlos, R. A. and Shapiro, Z. Ya. Representations of the Rotation and Lorentz Groups and Their Applications. Dover Publications, Mineola, New York, 2018.

13. Kerner, R. Graduation Z3 et la racine cubique de l’opérateur de Dirac. C. R. Acad. Sci. Paris, 1991, 312, 191–196 (in French).

14. Kerner, R. Z3 graded algebras and the cubic root of the supersymmetry translations. J. Math. Phys., 1992, 33, 403–411.
https://doi.org/10.1063/1.529922

15. Kerner, R. Ternary generalization of Pauli’s principle and the Z6-graded algebras. Phys. At. Nucl., 2017, 80, 522–534.
https://doi.org/10.1134/S1063778817030115

16. Kerner, R. The quantum nature of Lorentz invariance. Universe, 2019, 5(1).
https://doi.org/10.3390/universe5010001

17. Nambu, Y. Generalized Hamiltonian mechanics. Phys. Rev. D, 1973, 7, 2405–2412.
https://doi.org/10.1103/PhysRevD.7.2405

Back to Issue