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Abstract. We propose a unital associative algebra, motivated by a generalization of the Pauli’s exclusion principle proposed for
the quark model. The generators of this algebra satisfy the following relations: The sum of squares of all generators is equal to
zero (binary relation) and the sum of cyclic permutations of the factors in any triple product of generators is equal to zero (ternary
relations). We study the structure of this algebra and calculate the dimensions of spaces spanned by homogeneous monomials. We
establish a relation between our algebra and the irreducible representations of the rotation group. In particular, we show that the
10-dimensional space spanned by triple monomials is the space of a double irreducible unitary representation of the rotation group.
We use ternary q- and q̄-commutators, where q, q̄ are primitive 3rd order roots of unity, to split the 10-dimensional space spanned by
triple monomials into a direct sum of two 5-dimensional subspaces. We endow these subspaces with a Hermitian scalar product by
means of an orthonormal basis of triple monomials. In each subspace, there is an irreducible unitary representation so(3)→ su(5).
We calculate the matrix of this representation. The structure of this matrix indicates a possible connection between our algebra and
the Georgi–Glashow model.

Keywords: ternary algebras, irreducible representations, ternary extension of Lie algebra, ternary generalization of Pauli’s exclu-
sion principle, quark model.

1. INTRODUCTION

The idea of using algebras with n-ary law of multiplication in theoretical physics is becoming more and
more popular. An n-Lie algebra, where n ≥ 3, is an n-ary extension of the concept of a Lie algebra, intro-
duced by Filippov [10], and the important examples of n-Lie algebra constructed by means of commuting
vector fields were proposed by Dzhumadildaev [9]. n-Lie algebras with a totally skew-symmetric n-ary Lie
bracket, satisfying the Filippov–Jacobi identity, were used in the theory of M2 and M5 branes to construct a
generalization of the Nahm’s equation [4,5,7]. Independently of Filippov, Nambu [17] developed an analog
of Hamiltonian mechanics defined on spaces of odd dimensions by introducing into consideration an n-ary
analog of the Poisson bracket. This totally skew-symmetric n-ary bracket is now called an n-ary Nambu–
Poisson bracket. Later it was proved that an n-ary Nambu–Poisson bracket satisfies the Filippov–Jacobi
identity, which means that the algebraic structure induced by an n-ary Nambu–Poisson bracket can be con-
sidered as an n-Lie algebra. A concept of n-ary Lie algebra can be extended to Lie superalgebras and the
paper [6] (and the references therein) can be used as an introduction to this aspect of the theory of n-ary
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Lie algebras. It is worth mentioning that originally one of the motivations for Nambu to introduce an n-ary
generalization of the Poisson bracket was the quark model.

The quark model poses questions to theoretical physics that still have no clear answers. Undoubtedly,
one of the most important problems of the quark model is confinement. However, no less intriguing is the
question of why quarks have three colors and whether the coincidence of the number of colors with the
dimension of our space is accidental. As the quark model still contains unsolved problems, it serves as a
source of new ideas and approaches for theoretical physicists. Kerner [15,16] proposed a generalization of
the Pauli’s exclusion principle within the framework of the quark model. This generalization can be formu-
lated as follows: Three quarks having identical quantum characteristics cannot form a stable configuration
perceived as a strongly interacting particle. Note that this generalization of the Pauli’s exclusion principle
allows for a coexistence of two quarks with the same isospin value. Considering a mathematical form of
this generalization of the Pauli’s exclusion principle, we obtain an algebra with ternary relations. Therefore,
Kerner suggests calling this generalization of the Pauli’s exclusion principle the ternary generalization of
the Pauli’s principle.

Consider a wave function ψ(u,u,u) that represents the tensor product of three identical quantum states
|u〉. According to the ternary generalization of the Pauli’s exclusion principle, this function must van-
ish, ψ(u,u,u) = 0. Suppose now that we have a superposition of three different quantum states |v〉 =
λ |u1〉+µ |u2〉+ν |u3〉. According to the ternary generalization of the Pauli’s exclusion principle, we have
ψ(v,v,v) = 0. Assume the indices a,b,c run the values 1, 2, 3. Using the linearity of a wave function ψ , we
obtain that ψ(v,v,v) is equal to zero if and only if for any pair of integers a 6= b one has

ψ(ua,ub,ub)+ψ(ub,ub,ua)+ψ(ub,ua,ub) = 0, (1)

and for any triple of integers a 6= b 6= c one has

ψ(ua,ub,uc) + ψ(ub,uc,ua)+ψ(uc,ua,ub)

+ ψ(uc,ub,ua)+ψ(ub,ua,uc)+ψ(ua,uc,ub) = 0. (2)

Obviously, the above conditions are satisfied if we assume that a wave function ψ is skew-symmetric in
all arguments. However, this corresponds to the classical Pauli’s exclusion principle, which excludes the
coexistence of two quarks with the same isospin, i.e. in the case of skew-symmetry of a wave function each
term in (1) is separately equal to zero, ψ(ua,ub,ub) = ψ(ub,ub,ua) = ψ(ub,ua,ub) = 0.

Still, there is another possibility to solve the conditions (1) and (2), a possibility that does not use
the skew-symmetry of a wave function ψ and is consistent with the ternary generalization of the Pauli’s
exclusion principle. Indeed, if we assume that for any integers a,b,c (we admit a possibility of equal values)
a wave function ψ has the property

ψ(ua,ub,uc)+ψ(ub,uc,ua)+ψ(uc,ua,ub) = 0, (3)

then this wave function will satisfy (1) and (2).
Mathematically, the classical Pauli’s principle can be expressed by means of the skew symmetry of a

wave function of fermions, which in turn leads to a Grassmann algebra, i.e. to an algebra generated by
anticommuting generators. Arguing in a similar way, we conclude that an algebra motivated by the ternary
generalization of the Pauli’s exclusion principle should be an algebra generated by θ a, and it follows from
the equation (3) that these generators should obey the ternary relations

θ
a
θ

b
θ

c +θ
b
θ

c
θ

a +θ
c
θ

a
θ

b = 0. (4)

It should be noted that if we assume that generators θ a satisfy the relations

θ
a
θ

b
θ

c = qθ
b
θ

c
θ

a = q̄θ
c
θ

a
θ

b, q = exp(2πi/3), (5)
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which are evidently stronger than the relations (4), then the relations (4) will follow from (5). The algebra
with relations (5) was introduced and studied in [1,2,11,13,14]. In this paper, we propose an approach to
an algebra motivated by the ternary generalization of the Pauli’s exclusion principle, which is based on the
relations (4), which are more general than the relations (5). Note that an algebra with the relations (4) can
be endowed with an involution by means of adding to the generators θ 1,θ 2,θ 3 the conjugate generators
θ̄ 1, θ̄ 2, θ̄ 3, and the relations of an algebra with involution are given in [3].

In the present paper, we consider an associative unital algebra over the complex numbers C generated
by θ 1,θ 2, . . . ,θ N , which obey the following relations:(

θ
1)2

+
(
θ

2)2
+ . . .+

(
θ

N)2
= 0 (binary relation), (6)

θ
a
θ

b
θ

c + θ
b
θ

c
θ

a + θ
c
θ

a
θ

b = 0 (ternary relations), (7)

where a,b,c is any triple of integers 1,2, . . . ,N. We denote this algebra by R. This definition shows that in
algebra R, in addition to the ternary relations (7) (which are due to the ternary generalization of the Pauli’s
exclusion principle), there is one quadratic relation (6). It will be shown that this relation is necessary
in order to have a double irreducible representation of the rotation group in the space spanned by triple
monomials of algebra R.

In this paper, we study the structure of algebra R in the case when it is generated by three generators
θ 1,θ 2,θ 3. We show that R is a finite-dimensional algebra, and we find the dimensions of subspaces spanned
by homogeneous monomials. Let Rp ⊂R be a subspace spanned by homogeneous monomials of degree p.
We show that the algebra R provides a representation space for a double irreducible representation of the
rotation group. In particular, we show that the 10-dimensional space R3 spanned by monomials of degree
3 is the space of a double irreducible representation of weight 2 of the rotation group. We construct a basis
for this 10-dimensional space by means of monomials of degree 3. Making use of the eigenvalues q, q̄ of
the substitution operator, we split the 10-dimensional space R3 into the direct sum of two 5-dimensional
subspaces R3

q,R
3
q̄. In each of these subspaces, we have an irreducible weight 2 representation SO(3)→

SU(5). We show that the eigenvectors corresponding to the eigenvalue q can be constructed by means of a
ternary q-commutator

[θ a,θ b,θ c]q = θ
a
θ

b
θ

c + q̄θ
b
θ

c
θ

a +qθ
c
θ

a
θ

b, (8)

and the eigenvectors corresponding to the eigenvalue q̄ by means of a ternary q̄-commutator

[θ a,θ b,θ c]q̄ = θ
a
θ

b
θ

c +qθ
b
θ

c
θ

a + q̄θ
c
θ

a
θ

b. (9)

We propose a cyclic Z3-extension of a Lie algebra based on the properties of the ternary commutators (8),
(9), and give an example of such an extension for the Lie algebra induced by a unital associative algebra. We
introduce a Hermitian inner product into the 5-dimensional spaces R3

q,R
3
q̄ by constructing an orthonormal

basis. Then we find the explicit formula for irreducible representation in the 5-dimensional space of an
infinitesimal rotation in space R1. Since this irreducible representation is unitary, the obtained 5×5-matrix
is skew-Hermitian and its structure is similar to the structure of the matrix for quarks in the Georgi–Glashow
model [8].

2. ALGEBRA WITH TERNARY CYCLIC RELATIONS

The aim of this section is to introduce and study the algebra described in the Introduction. In this section we
study the symmetries of algebraic relations of this algebra and find the dimensions of subspaces spanned by
homogeneous monomials.

First of all, we define an algebra motivated by the ternary generalization of the Pauli’s exclusion principle
as follows:
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Definition 1. An algebra R is a unital associative algebra over C generated by θ 1,θ 2, . . . ,θ N , which obey
the quadratic relation

(θ 1)2 +(θ 2)2 + . . .+(θ N)2 = 0, (10)

and for any triple of integers a,b,c, the ternary relation

θ
a
θ

b
θ

c +θ
b
θ

c
θ

a +θ
c
θ

a
θ

b = 0. (11)

The identity element of an algebra R will be denoted by 1. In the case of equal superscripts a = b = c,
it follows from a ternary relation (11) that the cube of every generator θ a is zero, i.e.

(θ a)3 = 0, ∀a = 1,2, . . . ,N.

It is useful to denote the sum of squares of generators by Ω and to introduce a polynomial of 3rd degree Ωa

as follows:

Ω = δabθ
a
θ

b = (θ 1)2 +(θ 2)2 + . . .+(θ N)2,

Ω
a = δbcθ

b
θ

a
θ

c = θ
1
θ

a
θ

1 +θ
2
θ

a
θ

2 + . . .+θ
N

θ
a
θ

N .

It is also useful to denote the left-hand sides of the ternary relation (11) as

{θ a,θ b,θ c}= θ
a
θ

b
θ

c +θ
b
θ

c
θ

a +θ
c
θ

a
θ

b.

In analogy with a binary case, we call {θ a,θ b,θ c} the ternary cyclic anticommutator of the generators
θ a,θ b,θ c. Using these notations, the relations of the algebra R can be written in a compact form as

Ω = 0, {θ a,θ b,θ c}= 0.

Recall that the subspace of the algebra R, spanned by homogeneous monomials of degree p, is denoted by
Rp. In particular, the subspace R1 is spanned by the generators θ 1,θ 2, . . . ,θ N . The group of non-degenerate
matrices GL(N,C) acts on this subspace according to θ̃ a = Aa

b θ b, where A = (Aa
b) ∈GL(N,C). This action

can be considered as a transition to a set of new generators θ̃ a of the algebra R. It is easy to see that the
new generators θ̃ a satisfy the same ternary relations (11), i.e. the ternary relations of algebra R are invariant
under the action of the group GL(N,C). Indeed, we have

{θ̃ a, θ̃ b, θ̃ c}= Aa
i Ab

j Ac
k {θ i,θ j,θ k}= 0.

However, the system of all the relations of algebra R also includes the quadratic relation (10), and this
relation reduces the symmetry group GL(N,C) to its orthogonal subgroup O(N,C). Indeed, let θ̃ a = Aa

b θ b,
where A = (Aa

b) is an orthogonal matrix δabAa
i Ab

j = δi j. Then

Ω̃ = δabθ̃
a
θ̃

b = δabAa
i Ab

jθ
i
θ

j = δi jθ
i
θ

j = Ω,

and from Ω = 0 it immediately follows that Ω̃ = 0. If we multiply the quadratic relation (10) either from the
left or from the right by a generator θ a, we get the set of independent ternary relations

θ
a

Ω = 0, Ωθ
a = 0, a = 1,2, . . . ,N. (12)

These relations are also invariant under the action of orthogonal group. Indeed, we have

θ̃
a

Ω̃ = (Aa
bθ

b)Ω = Aa
b (θ

b
Ω) = 0, Ω̃ θ̃

a = Ω(Aa
bθ

b) = Aa
b (Ωθ

b) = 0.
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Hence, the relations (10), (11) are invariant under the action of the orthogonal group O(N,C). In particular,
they are invariant under the action of the real special orthogonal group SO(N,R).

Now we assume that N = 3, that is, we assume that the algebra R is generated by θ 1,θ 2,θ 3. Then
the dimension of the subspace R2, spanned by binary products of the generators θ aθ b, is 8, as we have
nine possible products θ aθ b and only one binary relation (10). Hence, dimR2 = 9−1 = 8. The following
relations form the set of ternary relations of algebra R:

{θ a,θ b,θ c}= 0, θ
a

Ω = 0, Ωθ
a = 0, (13)

where a,b,c= 1,2,3. It is clear that ternary relations θ a Ω= 0, Ωθ a = 0, where a= 1,2,3, are independent,
and the number of these relations is six. All these relations can be represented by the following equations:

θ
1 ((θ 2)2 +(θ 3)2)= 0,

(
(θ 2)2 +(θ 3)2)

θ
1 = 0, (14)

θ
2 ((θ 3)2 +(θ 1)2)= 0,

(
(θ 3)2 +(θ 1)2)

θ
2 = 0, (15)

θ
3 ((θ 1)2 +(θ 2)2)= 0,

(
(θ 1)2 +(θ 2)2)

θ
3 = 0. (16)

In order to find independent ternary relations with the ternary cyclic anticommutator on the left-hand side,
we have to take into account the following symmetry of the ternary cyclic commutator:

{θ a,θ b,θ c}= {θ b,θ c,θ a}= {θ c,θ a,θ b}.

Thus, if all three superscripts a,b,c are different, i.e. a = 1,b = 2,c = 3, we get two independent relations:

{θ 1,θ 2,θ 3}= 0, {θ 3,θ 2,θ 1}= 0.

If two of the three values are equal but different from the third, we have only one independent relation. Thus,
in this case, we have six independent relations:

{θ 1,θ 2,θ 2}= 0, {θ 2,θ 1,θ 1}= 0,
{θ 1,θ 3,θ 3}= 0, {θ 3,θ 1,θ 1}= 0,
{θ 2,θ 3,θ 3}= 0, {θ 3,θ 2,θ 2}= 0.

Finally, equal superscripts a = b = c give us three more independent relations (θ 1)3 = 0, (θ 2)3 = 0, and
(θ 3)3 = 0. Summing up the number of independent ternary relations with the ternary cyclic anticommutator
on the left-hand side, we obtain 11 relations, and adding to this number six previously found independent
relations, we conclude that the number of all independent ternary relations is 17. Hence, the dimension of
the subspace R3, spanned by triple monomials θ aθ bθ c, is 27 – 17 = 10.

We construct a basis for the space R3 as follows. Take a = 1,b = 2,c = 2. This combination determines
the ternary relation

{θ 1,θ 2,θ 2}= θ
1
θ

2
θ

2 +θ
2
θ

2
θ

1 +θ
2
θ

1
θ

2 = 0.

Taking two monomials θ 1θ 2θ 2, θ 2θ 2θ 1 as elements of a basis, we see that the monomial θ 2θ 1θ 2 can
be expressed in terms of these two monomials. The relations (14) show that the monomials θ 1θ 3θ 3 and
θ 3θ 3θ 1 can also be expressed in terms of the monomials θ 1θ 2θ 2, θ 2θ 2θ 1. From the ternary relation

{θ 1,θ 3,θ 3}= θ
1
θ

3
θ

3 +θ
3
θ

3
θ

1 +θ
3
θ

1
θ

3 = 0,

it follows that the monomial θ 3θ 1θ 3 can be expressed in terms of θ 1θ 3θ 3, θ 3θ 3θ 1, which means that it can
also be expressed in terms of θ 1θ 2θ 2 and θ 2θ 2θ 1. Similar reasoning leads to the conclusion that each pair
of integers (1,2),(2,3),(3,1) gives two linearly independent monomials. We obtain four more monomials
in the case when all indices are different, i.e. a = 1,b = 2,c = 3 and a = 3,b = 2,c = 1.
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Hence, the following triple monomials

f1 = θ
1
θ

2
θ

2, f2 = θ
2
θ

3
θ

3, f3 = θ
3
θ

1
θ

1, f4 = θ
1
θ

2
θ

3, f5 = θ
3
θ

2
θ

1, (17)
f6 = θ

2
θ

2
θ

1, f7 = θ
3
θ

3
θ

2, f8 = θ
1
θ

1
θ

3, f9 = θ
2
θ

3
θ

1, f10 = θ
2
θ

1
θ

3 (18)

form the basis for the 10-dimensional space R3. As an index for elements of the basis (17), (18), we will
use capital letters from the beginning of the Latin alphabet, assuming that they take integer values from 1
to 5. Then the first five elements of the basis can be written as fA and the next five elements as fA+5, where
A = 1,2, . . . ,5.

The dimensions of spaces of higher degree monomials were found by means of the methods of computer
algebra. The dimension of the space R4, spanned by monomials of the 4th degree, is 7. In the case of
monomials of the 5th degree, the number of all possible monomials 2, 4, 3 coincides with the number of
independent relations of the 5th order of the algebra R, and thus the dimension of the space R5 (and the
spaces Rp, p > 5) is 0. Hence, the dimension of the vector space of the whole algebra R is 29.

3. IRREDUCIBLE REPRESENTATIONS OF THE ROTATION GROUP

The purpose of this section is to show that the algebra R is closely related to irreducible tensor represen-
tations of the rotation group in a space of tensors of the 3rd order. More precisely, we will show that the
10-dimensional space R3 of the algebra R, spanned by triple monomials, is the space of a double irre-
ducible unitary representation of the rotation group SO(3). In the next section, in order to split this double
irreducible representation into two irreducible representations, we will split by means of ternary commuta-
tors the 10-dimensional space R3 into a direct sum of two 5-dimensional subspaces, and in each subspace
we will have an irreducible representation SO(3)→ SU(5).

Let g = (ga
b) ∈ SO(3) be a 3rd order special orthogonal matrix. The rotation group acts in the space Rp,

spanned by monomials of pth degree, as follows:

Πg(θ
a1θ

a2 . . .θ ap) = ga1
b1

ga2
b2
. . .gap

bp
θ

b1θ
b2 . . .θ bp . (19)

In this section, we will consider a representation of the rotation group in the space R3, spanned by the triple
monomials. Our aim is to show that this representation is a double irreducible tensor representation of the
rotation group. We will consider an infinitesimal version of this representation, i.e. a representation of the
Lie algebra so(3). This representation will be denoted by L ∈ so(3)→ πL ∈ gl(R3), where L = (La

b) is a
skew-symmetric 3rd order matrix. Obviously, πL : Rp→Rp is a derivation of the algebra R, i.e.

πL(θ
a1θ

a2 . . .θ ap) = La1
b θ

b
θ

a2 . . .θ ap +La2
b θ

a1θ
b . . .θ ap + . . .+Lap

b θ
a1θ

a2 . . .θ b.

Let Cπ = π2
L1
+π2

L2
+π2

L3
be the Casimir operator of a representation π . Here L1,L2,L3 are the infinitesimal

rotations,

L1 =

 0 0 0
0 0 −1
0 1 0

 , L2 =

 0 0 1
0 0 0
−1 0 0

 , L3 =

 0 −1 0
1 0 0
0 0 0

 .

It is proved in [12] that the tensors of 3rd order, transforming according to an irreducible representation of
the rotation group, satisfy a condition, which can be written in terms of triple monomials θ aθ bθ c as follows:

Cπ (θ
a
θ

b
θ

c)+6θ
a
θ

b
θ

c = 0. (20)

In other words, all triple monomials, which satisfy the condition (20), span the representation space of a
double irreducible representation of the rotation group.
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First of all, we will show that the triple monomials, which span the space R3 of the algebra R, satisfy
the condition (20). In other words, the condition (20) follows from the ternary relations (13) of the algebra
R. For further calculations, it is convenient to introduce the 3rd order matrices ρab = εabc Lc, where εabc

is a totally skew-symmetric tensor. If (ρab)c
d are the entries of the matrix ρab, and we define πab(θ c) =

(ρab)c
d θ d , then

π
ab(θ c) = δ

bc
θ

a−δ
ac

θ
b. (21)

Taking into account that πab acts on a triple monomial as an algebra derivation, we obtain

π
dh(

θ
a
θ

b
θ

c) = δ
ah

θ
d
θ

b
θ

c +δ
bh

θ
a
θ

d
θ

c +δ
ch

θ
a
θ

b
θ

d

−δ
da

θ
h
θ

b
θ

c−δ
db

θ
a
θ

h
θ

c−δ
dc

θ
a
θ

b
θ

h. (22)

Making use of (21), we can calculate the square of the operator πdh and, acting by the square of this operator
on a triple monomial θ aθ bθ c, we obtain the expression

δ
ah

δ
dh

θ
d
θ

b
θ

c +δ
ah

δ
bh

θ
d
θ

d
θ

c +δ
ah

δ
ch

θ
d
θ

b
θ

d−δ
ah

δ
dd

θ
h
θ

b
θ

c

−δ
ah

δ
db

θ
d
θ

h
θ

c−δ
ah

δ
dc

θ
d
θ

b
θ

h +δ
ah

δ
bh

θ
d
θ

d
θ

c +δ
bh

δ
dh

θ
a
θ

d
θ

c

+δ
bh

δ
ch

θ
a
θ

d
θ

d−δ
ad

δ
bh

θ
h
θ

d
θ

c−δ
dd

δ
bh

θ
a
θ

h
θ

c−δ
dc

δ
bh

θ
a
θ

d
θ

h

+δ
ah

δ
ch

θ
d
θ

b
θ

d +δ
bh

δ
ch

θ
a
θ

d
θ

d +δ
ch

δ
dh

θ
a
θ

b
θ

d−δ
ad

δ
ch

θ
h
θ

b
θ

d

−δ
bd

δ
ch

θ
a
θ

h
θ

d−δ
dd

δ
ch

θ
a
θ

b
θ

h−δ
ad

δ
hh

θ
d
θ

b
θ

c−δ
ad

δ
bh

θ
h
θ

d
θ

c

−δ
ad

δ
ch

θ
h
θ

b
θ

d +δ
ad

δ
dh

θ
h
θ

b
θ

c +δ
ad

δ
bd

θ
h
θ

h
θ

c +δ
ad

δ
cd

θ
h
θ

b
θ

h

−δ
bd

δ
ah

θ
d
θ

h
θ

c−δ
bd

δ
hh

θ
a
θ

d
θ

c−δ
bd

δ
ch

θ
a
θ

h
θ

d +δ
ad

δ
bd

θ
h
θ

h
θ

c

+δ
bd

δ
hd

θ
a
θ

h
θ

c +δ
bd

δ
cd

θ
a
θ

h
θ

h−δ
ah

δ
cd

θ
d
θ

b
θ

h−δ
bh

δ
cd

θ
a
θ

d
θ

h

−δ
cd

δ
hh

θ
a
θ

b
θ

d +δ
ad

δ
cd

θ
h
θ

b
θ

h +δ
bd

δ
cd

θ
a
θ

h
θ

h +δ
cd

δ
dh

θ
a
θ

b
θ

h. (23)

Now we calculate the Casimir operator Cπ = (π23)2+(π31)2+(π12)2. From the formula (21) it follows that
πaa = 0 and πab =−πba, hence (πab)2 = (πba)2. If we take the sum of the squares of operators πdh, where
the superscripts d,h run the values 1,2,3, we obtain two times the Casimir operator, 2Cπ . This means that
if in the expression (23) we take the sum over the superscripts d,h, the resulting expression will be equal to
2Cπ . We obtain

Cπ(θ
a
θ

b
θ

c) = 2
(
δ

ab
Ωθ

c +δ
bc

θ
a

Ω+δ
ca

Ω
b−{θ c,θ b,θ a}−3θ

a
θ

b
θ

c), (24)

where

Ω = δabθ
a
θ

b = ∑
a
(θ a)2, Ω

b = δacθ
a
θ

b
θ

c = ∑
a

θ
a
θ

b
θ

a. (25)

Substituting the right-hand side of (24) into the basic equation (20), we obtain

δ
ab

Ωθ
c +δ

bc
θ

a
Ω+δ

ca
Ω

b−{θ c,θ b,θ a}= 0. (26)

By virtue of our assumption that a triple monomial θ aθ bθ c belongs to the space R3, in this case the gener-
ators θ 1,θ 2,θ 3 obey the ternary relations

θ
a

Ω = 0, Ωθ
a = 0, {θ a,θ b,θ c}= 0. (27)

We see that the first, second and fourth terms in (26) vanish and the condition (26) takes the form δ ca Ωb = 0.
It is easy to show that in the algebra R, in addition to the above ternary relations, we also have the ternary
relations Ωa = 0. Indeed, we can write

δbc{θ b,θ c,θ a}= Ωθ
a +Ω

a +θ
a

Ω. (28)
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Consequently, Ωa = δbc{θ b,θ c,θ a}−Ωθ a − θ a Ω, and the relations Ωa = 0, where a = 1,2,3, follow
immediately from the ternary relations (27). Thus, we have proved that the condition (20) of irreducibility
of a representation π follows from the ternary relations of the algebra R.

Conversely, we can now prove that the ternary relations of the algebra R follow from the condition (20).
Indeed, let us assume that a triple monomial θ aθ bθ c satisfies the condition (20). But this condition can be
put in the form (26). Hence, taking the sum over a= b in the left-hand side of this equation, we get Ωθ a = 0.
Analogously, the sum over b = c leads to θ aΩ = 0 and the sum over a = c gives Ωa = 0. Hence, we also
have {θ a,θ b,θ c} = 0. Thus, we have proved that the ternary relations of the algebra R follow from the
irreducibility condition (20) for a representation π , and the space R3 is a representation space for a double
irreducible representation of the rotation group.

4. SUBSTITUTION OPERATOR AND ITS EIGENVECTORS

In this section, our aim is to split the 10-dimensional space R3 of the algebra R into a direct sum of
two 5-dimensional subspaces in such a way that this decomposition will be invariant with respect to the
representation of the rotation group. Then in each 5-dimensional subspace there will be an irreducible
unitary representation of the rotation group SO(3)→ SU(5). This decomposition can be done with the help
of eigenvectors of a substitution operator. Let σ be a cyclic substitution such that σ(1) = 2, σ(2) = 3,
σ(3) = 1. Then we can define a substitution operator Sσ acting on triple monomials as follows:

Sσ (θ
a1θ

a2θ
a3) = θ

aσ(1)θ
aσ(2)θ

aσ(3) = θ
a2θ

a3θ
a1 .

The substitution operator Sσ maps each ternary relation from the set of relations (27) either into a ternary re-
lation from the same set of ternary relations or into their linear combination. In other words, the substitution
operator preserves the structure of the space R3. It is evident that the ternary relations with the ternary cyclic
anticommutator on the left-hand side are invariant with respect to the substitution operator Sσ . Indeed, we
have

Sσ ({θ a,θ b,θ c}) = {θ b,θ c,θ a}= {θ a,θ b,θ c}. (29)

The second part of the ternary relations (14)–(16) is also invariant with respect to Sσ . Indeed, if we apply
the substitution operator Sσ to the first relation from the left in (14), we obtain the second ternary relation in
the same row:

Sσ

(
θ

1((θ 2)2 +(θ 3)2)) = Sσ (θ
1
θ

2
θ

2)+Sσ (θ
1
θ

3
θ

3) = θ
2
θ

2
θ

1 +θ
3
θ

3
θ

1

=
(
(θ 2)2 +(θ 3)2)

θ
1 = 0.

If we apply the substitution operator Sσ to the left-hand side of the second relation in (14), we obtain

Sσ

((
(θ 2)2 +(θ 3)2)

θ
1
)

= Sσ (θ
2
θ

2
θ

1)+Sσ (θ
3
θ

3
θ

1)

= θ
2
θ

1
θ

2 +θ
3
θ

1
θ

3. (30)

However, in the previous section it is proved that for any integer a = 1,2,3 it holds Ωa = 0, where

Ω
a = θ

1
θ

a
θ

1 +θ
2
θ

a
θ

2 +θ
3
θ

a
θ

3.

Taking subsequently a = 1,2,3 in Ωa = 0, we get three relations:

θ
2
θ

1
θ

2 +θ
3
θ

1
θ

3 = 0, θ
1
θ

2
θ

1 +θ
3
θ

2
θ

3 = 0, θ
2
θ

3
θ

2 +θ
1
θ

3
θ

1 = 0,

which show that (30) does not lead to a new relation, but gives the relation that follows from the set of
ternary relations (27).
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From σ3 = id, where id is the identical substitution, it follows that S3
σ = I, where I is the identity operator

in the vector space R3. Thus, the eigenvalues of the substitution operator Sσ are cubic roots of unity 1,q, q̄,
where q = exp(2π i/3). This means that we can decompose the space R3, spanned by triple monomials,
into the direct sum of the subspaces, spanned by the eigenvectors corresponding to the eigenvalues 1,q, q̄.
Let us denote these subspaces by R3

1, R3
q, R3

q̄. Then R3 =R3
1⊕R3

q⊕R3
q̄.

The ternary cyclic anticommutator can be written with the help of the substitution operator as follows:

{θ a,θ b,θ c}= θ
a
θ

b
θ

c +Sσ (θ
a
θ

b
θ

c)+S2
σ (θ

a
θ

b
θ

c). (31)

The formula (29) shows that the ternary cyclic anticommutator is an eigenvector of the substitution oper-
ator with eigenvalue 1. Because of ternary relations {θ a,θ b,θ c} = 0, the subspace of eigenvectors of the
substitution operator Sσ with eigenvalue 1 is the trivial subspace R3

1 = {0}, and we have R3 =R3
q⊕R3

q̄.
Let us consider the following ternary expressions of generators:

[θ a,θ b,θ c]q = θ
a
θ

b
θ

c + q̄Sσ (θ
a
θ

b
θ

c)+qS2
σ (θ

a
θ

b
θ

c)

= θ
a
θ

b
θ

c + q̄ θ
b
θ

c
θ

a +q θ
c
θ

a
θ

b (32)

and

[θ a,θ b,θ c]q̄ = θ
a
θ

b
θ

c +qSσ (θ
a
θ

b
θ

c)+ q̄S2
σ (θ

a
θ

b
θ

c)

= θ
a
θ

b
θ

c +q θ
b
θ

c
θ

a + q̄ θ
c
θ

a
θ

b. (33)

It is easy to verify that (32) and (33) are the eigenvectors of Sσ . Indeed, we have

Sσ

(
[θ a,θ b,θ c]q

)
= Sσ (θ

a
θ

b
θ

c)+ q̄ S2
σ (θ

a
θ

b
θ

c)+qS3
σ (θ

a
θ

b
θ

c)

= q (θ a
θ

b
θ

c + q̄ Sσ (θ
a
θ

b
θ

c)+qS2
σ (θ

a
θ

b
θ

c)) = q [θ a,θ b,θ c]q, (34)

and we see that the expression [θ a,θ b,θ c]q is an eigenvector of the substitution operator with the eigenvalue
q. Analogously, one can verify that [θ a,θ b,θ c]q̄ is an eigenvector of the substitution operator with the
eigenvalue q̄.

5. CYCLIC Z3-EXTENSION OF A LIE ALGEBRA

In this section, we will study the two expressions (32) and (33), introduced at the end of the previous section,
in order to construct the eigenvectors of the substitution operator Sσ . Our aim in this section is to show that
these two expressions have properties similar to the properties of the binary commutator [A,B] =A ·B−B ·A,
and they can be used to construct a ternary extension of a Lie algebra different from the one proposed by
Filippov and Nambu.

We start with general considerations to show that both the binary commutator and its n-ary generaliza-
tion, proposed in the approach of Filippov and Nambu, are special cases of the same general construction.
Let G be a subgroup of a symmetric group of order n. Suppose this subgroup has a representation ρ : G→C
in the field of complex numbers such that

∑
σ∈G

ρ(σ) = 0. (35)

Let L be a vector space over complex numbers. Then an n-ary commutator based on the group G and its
representation ρ is a multilinear mapping

(u1,u2, . . . ,un) ∈ L×L× . . .×L→ [u1,u2, . . . ,un] ∈ L
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that has the property
[uσ(1),uσ(2), . . . ,uσ(n)]ρ = ρ(σ)[u1,u2, . . . ,un]. (36)

Note that from (35) and (36) it follows that

∑
σ∈G

[uσ(1),uσ(2), . . . ,uσ(n)]ρ = 0. (37)

The binary commutator and its n-ary generalization, proposed by Filippov and Nambu, fit this definition as
a particular case when G is a symmetric group of order n and ρ maps an even permutation to 1 and an odd
permutation to –1. Then the property (36) means a skew-symmetry of an n-ary commutator. Note that in
this construction, 1 and –1 can be considered as the square roots of unity. Moreover, the representation ρ is
faithful only in the case of the symmetric group of order 2, i.e. in the case of the binary commutator.

Now, let G be the group Z3 of cyclic substitutions of the set {1,2,3}. Then there are two faithful
representations of Z3 by cubic roots of unity:

ρ : {id,σ ,σ2} → {1,q, q̄}, ρ̄ : {id,σ ,σ2} → {1, q̄,q},

where

σ =

(
1 2 3
2 3 1

)
, q = exp(2πi/3).

Thus, applying the above given general definition (36), we obtain two ternary commutators [u1,u2,u3]q and
[u1,u2,u3]q̄ based on the cyclic group Z3 and its two faithful representations by cubic roots of unity. These
ternary commutators have the properties

[uσ(1),uσ(2),uσ(3)]q = ρ(σ) [u1,u2,u3]q, (38)
[uσ(1),uσ(2),uσ(3)]q̄ = ρ̄(σ) [u1,u2,u3]q̄, (39)

and, subsequently, we will refer to them as the ternary cyclic q-commutator and the ternary cyclic q̄-
commutator, respectively. It is easy to verify that the two expressions (32), (33), introduced in the previous
section, in order to construct the eigenvectors of the cyclic substitution operator Sσ , have exactly the same
properties, i.e. they are ternary cyclic commutators.

Naturally, those properties of a commutator that we use to extend the notion of a binary Lie bracket to
algebras with an n-ary multiplication law are only a part of the structure that could be called a generalization
of a Lie algebra. The second part of this structure, and the most important one, is an analogue of the Jacobi
identity. We propose such an identity in the following definition.

Definition 2. Let g be a Lie algebra and let ρ : a∈ g→ ρa ∈ gl(V ) be its representation in a vector space V .
A trilinear mapping

(x,y,z) ∈V ×V ×V → [[x,y,z]] ∈V (40)

is called a ternary Z3-bracket compatible with a representation ρ of a Lie algebra g if it has the property

[[x,y,z]]+ [[y,z,x]]+ [[z,x,y]] = 0, x,y,z ∈V (41)

and it satisfies the identity

ρa([[x,y,z]]) = [[ρa(x),y,z]]+ [[x,ρa(y),z]]+ [[x,y,ρa(z)]]. (42)

A vector space V equipped with a ternary Z3-bracket, compatible with a representation ρ of a Lie algebra
g, will be called a ternary Z3-extension of a Lie algebra g.
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As a comment on this definition, we note that the ternary cyclic q-commutator and the ternary cyclic
q̄-commutator satisfy the condition (41). This follows from the general definition and the formula (37).

In order to give an example of a ternary Z3-extension of a Lie algebra, we consider a unital associative
algebra A over the complex numbers. The identity element of this algebra will be denoted by e. We
can consider the algebra A as a Lie algebra by equipping it with the commutator [u,v] = uv− vu, where
u,v ∈ A . To emphasize the fact that we are considering A as a Lie algebra, we will denote it by AL. As
a representation of this Lie algebra, we use the adjoint representation ad : u ∈ AL → adu ∈ gl(A ), where
adu(x) = [u,x].

Theorem 1. Define
[[x,y,z]] = xyz+ q̄ y zx+q zxy, x,y,z ∈A . (43)

Then (43) is a ternary cyclic q-bracket compatible with the adjoint representation of the Lie algebra AL,
and A equipped with (43) is a ternary Z3-extension of the Lie algebra AL.

Proof. The statement that (43) is a ternary cyclic q-bracket follows from the formula (34) proved at the end
of the previous section. Direct calculations, which will be not presented in this paper, show that in this case
for any elements x,y,z,v of an algebra A we have the identity

[x, [[y,z,v]]] = [[[x,y],z,v]]+ [[y, [x,z],v]]+ [[y,z, [x,v]]]. (44)

This identity shows that the adjoint representation of the Lie algebra AL is compatible with the ternary
cyclic q-commutator (43). Hence, the vector space A equipped with the ternary cyclic q-commutator (43)
is a ternary Z3-extension of the Lie algebra AL.

It is worth noting that the ternary bracket (43) is not associative. Recall that in the case of a ternary
operation there are two types of associativity. These are associativity of the first kind,

(xyz)uv = x(yzu)v = xy(zuv)

and associativity of the second kind,

(xyz)uv = x(uzy)v = xy(zuv),

where x,y,z,u,v ∈ A . In case of the ternary bracket (43), neither the associativity of the first kind nor the
associativity of the second kind is applicable. This is natural, since in the binary case the commutator on an
associative algebra defines a Lie algebra, which is a non-associative algebra.

The final remark is that the identity element e of an algebra A makes it possible to reduce the ternary
bracket (43) to the usual commutator of two elements. Indeed, we have

[[x,e,y]] = xey+ q̄ eyx+q yxe = xy+(q̄+q)yx
= xy− yx = [x,y]. (45)

It is also important to note here that if we take z = e in the identity (44), the identity (44) takes the form of
the Jacobi identity. Hence, the identity (44) can be considered as a Z3-extension of the Jacobi identity. We
think that this justifies the use of our proposed term ‘Z3-extension of a Lie algebra’.

6. EIGENVECTOR BASES

Our next aim is to prove that the polynomials

f′1 = [θ 1,θ 2,θ 2]q, f′2 = [θ 2,θ 3,θ 3]q, f′3 = [θ 3,θ 1,θ 1]q,

f′4 = [θ 1,θ 2,θ 3]q, f′5 = [θ 3,θ 2,θ 1]q (46)



72 Proceedings of the Estonian Academy of Sciences, 2023, 72, 1, 61–76

and

f̄′1 = [θ 1,θ 2,θ 2]q̄, f̄′2 = [θ 2,θ 3,θ 3]q̄, f̄′3 = [θ 3,θ 1,θ 1]q̄,

f̄′4 = [θ 1,θ 2,θ 3]q̄, f̄′5 = [θ 3,θ 2,θ 1]q̄ (47)

form the bases for the subspaces R3
q and R3

q̄, respectively. To prove this, it is necessary to prove that these
polynomials form a complete system of linearly independent polynomials. We start by showing that this
system of polynomials is complete, i.e. that any q-eigenvector is a linear combination of these polynomials.
We will use the basis {fA, fA+5}, where A = 1,2, . . . ,5, for the subspace R3, spanned by triple monomials.
Note that fA+5 = Sσ (fA), and we can write the basis in the form {fA,Sσ (fA)}. Each vector X of the space R3

can be written as a linear combination of vectors of the basis

X = ∑
A

(
xA fA + xA+5 Sσ (fA)

)
. (48)

A vector X is a λ -eigenvector of Sσ if Sσ (X) = λ X , where λ ∈ {1,q, q̄}. Hence, for a λ -eigenvector, we
have the equation

∑
A

(
xA Sσ (fA)+ xA+5 S2

σ (fA)
)
= ∑

A
(λ xA fA +λ xA+5 Sσ (fA)). (49)

By virtue of the relations (11) of the algebra R, for any 1≤ A≤ 5 we have

fA +Sσ (fA)+S2
σ (fA) = 0.

Therefore, S2
σ (fA) =−fA−Sσ (fA). Substituting this expression into the left-hand side of the equation (49),

we obtain

∑
A

(
− xA+5 fA +(xA− xA+5)Sσ (fA)

)
= ∑

A

(
λ xA fA +λ xA+5 Sσ (fA)

)
. (50)

This leads to a system of linear equations

xA+5 =−λxA, xA− xA+5 = λ xA+5. (51)

Substituting −λxA instead of xA+5 in the second equation, we obtain

(1+λ +λ
2)xA = 0.

Taking the first eigenvalue λ = 1, we see that this equation, and, hence, the system of equations (51), has
only the trivial solution xA = xA+5 = 0. This proves that the subspace of eigenvectors with eigenvalue 1 is
trivial, as stated above.

Since q, q̄ are the roots of the equation 1+λ +λ 2 = 0, in the case of λ = q or λ = q̄, the system (51)
has non-trivial solutions, which can be written as

xA+5 =−qxA (q-eigenvectors), xA+5 =−q̄ xA (q̄-eigenvectors).

Therefore, if X is a q-eigenvector of the substitution operator Sσ , it can be written in the form

X = ∑
A

xA (fA−qSσ (fA)). (52)

If X is a q̄-eigenvector of the substitution operator Sσ , it can be written in the form

X = ∑
A

xA (fA− q̄Sσ (fA)). (53)
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It is easily verified that the vectors fA− qSσ (fA) and fA− q̄Sσ (fA) are linearly independent q-eigenvectors
and q̄-eigenvectors of the substitution operator Sσ , and they form the bases for the subspaces R3

q and R3
q̄,

respectively. The formulae (52) and (53) show that linearly independent q-eigenvectors and q̄-eigenvectors
form complete systems of vectors for the subspaces R3

q and R3
q̄, respectively. Thus, they are the bases for

these subspaces.
The transition from the bases fA−qSσ (fA) and fA− q̄Sσ (fA) to the systems of polynomials (46) and (47),

respectively, is carried out by multiplying each polynomial fA−qSσ (fA) (fA− q̄Sσ (fA)) by the factor 1−q
(1− q̄). Indeed, for the first polynomial of the basis fA−qSσ (fA), i.e. A = 1, we have

(1−q)(θ 1
θ

2
θ

2−qθ
2
θ

2
θ

1) = θ
1
θ

2
θ

2−qθ
1
θ

2
θ

2−qθ
2
θ

2
θ

1 +q2
θ

2
θ

2
θ

1

= θ
1
θ

2
θ

2 +q2
θ

2
θ

2
θ

1 +q(−θ
1
θ

2
θ

2−θ
2
θ

2
θ

1)

= θ
1
θ

2
θ

2 +q2
θ

2
θ

2
θ

1 +qθ
2
θ

1
θ

2 = [θ 1,θ 2,θ 2]q = f′1.

In deriving this relation, we used the relation θ 1θ 2θ 2 +θ 2θ 2θ 1 +θ 2θ 1θ 2 = 0 of the algebra R, written in
the form −θ 1θ 2θ 2−θ 2θ 2θ 1 = θ 2θ 1θ 2. Relations for the remaining polynomials can be derived similarly.
Therefore, we have

f′A = (1−q)(fA−qSσ (fA)), f̄′A = (1− q̄)(fA− q̄Sσ (fA)).

Obviously, after the multiplication by 1− q and 1− q̄, the resulting systems of polynomials f′A and f̄′A are
still the bases for R3

q and R3
q̄, respectively.

7. MATRIX OF REPRESENTATION SO(3)→ SU(5)

The algebra we have introduced is closely related to irreducible representations of the rotation group SO(3).
A rotation in the space R1, spanned by the generators of the algebra θ a, generates linear transformations
in the 5-dimensional subspaces R3

q,R
3
q̄, spanned by the ternary polynomials f′A and f̄′A, respectively. These

linear transformations form the 5-dimensional irreducible representations of the rotation group. To describe
the infinitesimal form of these irreducible representations, we introduce a derivation of the algebra R. Let
L be an element of the Lie algebra so(3), i.e. L is a skew-symmetric matrix and

L =

 0 u3 −u2

−u3 0 u1

u2 −u1 0

=−u1 L1−u2 L2−u3 L3 =−∑
a

ua La.

To each such matrix we associate a derivation DL of the algebra R, defining it on the identity element and
the generators of the algebra as

DL(1) = 0, DL(θ
1) = u3

θ
2−u2

θ
3, DL(θ

2) = u1
θ

3−u3
θ

1, DL(θ
3) = u2

θ
1−u1

θ
2.

The derivation DL extends to the whole algebra R by linearity and the Leibniz rule.
Our next goal is to introduce an orthonormal basis in the space R3 in such a way that the matrix of the

derivation DL would be a skew-Hermitian matrix. Of course, this would correspond to a unitary (irreducible)
representation of the rotation group. First of all, we calculate the matrix of DL in the basis f′A to find

DL(f
′
1) = −u3 f′2 +u2 f′3 +u1 (f′4 +q2 f′5),

DL(f
′
2) = u3 f′1−u1 f′3 +u2 (q f′4 +q f′5),

DL(f
′
3) = −u2 f′1 +u1 f′2 +u3 (q2 f′4 + f′5),

DL(f
′
4) = −2u1 f′1−2q2u2 f′2−2qu3 f′3,

DL(f
′
5) = −2qu1 f′1−2q2u2 f′2−2u3 f′3.
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Now, we introduce a Hermitian scalar product in the 5-dimensional complex space R3
q by means of an

orthonormal basis eA in such a way that the derivation operator DL is skew-Hermitian, i.e. for any subscripts
A,B the Hermitian scalar product satisfies

〈DL(eA),eB〉+ 〈eA,DL(eB)〉= 0. (54)

Simple calculations show that, assuming the vectors of the initial basis f′A to be orthogonal, i.e. 〈f′A, f′B〉= 0
and |f′1|= |f′2|= |f′3|, |f′4|= |f′5|, where |f′A|2 = 〈f′A, f′A〉, we obtain the solution of the equation (54), except for
those cases when one vector eA belongs to the set {f′1, f′2, f′3}, while the other vector eB belongs to {f′4, f′5}. In
these cases, the condition (54) is satisfied if

|f′4|= |f′5|= 2|f′1|= 2|f′2|= 2|f′3|.

This indicates that we have to renormalize the vectors f′1, f
′
2, f
′
3. Hence, the Hermitian scalar product in the

5-dimensional complex space R3
q is determined by the orthonormal basis

e1 =
√

2 [θ 1,θ 2,θ 2]q =
√

2(1−q)(f1−qSσ (f1),

e2 =
√

2 [θ 2,θ 3,θ 3]q =
√

2(1−q)(f2−qSσ (f2),

e3 =
√

2 [θ 3,θ 1,θ 1]q =
√

2(1−q)(f3−qSσ (f3),

e4 = [θ 1,θ 2,θ 3]q = (1−q)(f4−qSσ (f4),

e5 = [θ 3,θ 2,θ 1]q = (1−q)(f5−qSσ (f5),

and the matrix of the derivation DL in this basis is skew-Hermitian. Similar constructions in the 5-dimen-
sional complex space R3

q̄ lead to the orthonormal basis

ē1 =
√

2 [θ 1,θ 2,θ 2]q̄ =
√

2(1− q̄)(f1− q̄Sσ (f1),

ē2 =
√

2 [θ 2,θ 3,θ 3]q̄ =
√

2(1− q̄)(f2− q̄Sσ (f2),

ē3 =
√

2 [θ 3,θ 1,θ 1]q̄ =
√

2(1− q̄)(f3− q̄Sσ (f3),

ē4 = [θ 1,θ 2,θ 3]q̄ = (1− q̄)(f4− q̄Sσ (f4),

ē5 = [θ 3,θ 2,θ 1]q̄ = (1− q̄)(f5− q̄Sσ (f5).

Calculating the matrix of the derivation DL in the basis eA, we obtain the matrix
0 u3 −u2 −

√
2 u1 −

√
2q u1

−u3 0 u1 −
√

2 q̄u2 −
√

2 q̄u2

u2 −u1 0 −
√

2qu3 −
√

2 u3
√

2 u1
√

2qu2
√

2 q̄u3 0 0√
2 q̄u1

√
2qu2

√
2 u3 0 0

 , (55)

and a similar matrix (with the replacement of q by q̄ and vice versa) in the basis ēA.

8. CONCLUSION

We have introduced and studied the structure of an algebra generated by θ a, subject to a single binary and
a set of ternary relations. This algebra is motivated by a ternary generalization of the Pauli’s exclusion
principle in the framework of the quark model. We have shown that the 10-dimensional space spanned
by triple monomials of our algebra is a representation space of a double irreducible representation of the
rotation group. Based on primitive 3rd order roots of unity, we have proposed a ternary Z3-generalization
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of the notion of a commutator. Using these ternary commutators, we where able to split the 10-dimensional
representation space into two 5-dimensional subspaces, and to prove that each subspace is a representation
space for the irreducible representation of the rotation group. We have constructed an orthonormal basis in
each of these subspaces and computed the matrix of the derivation operator.

The standard model for quarks and leptons fits nicely into the representations of SU(5). The two matrices
used in the Georgi–Glashow model can be found in [8] and they have the form

5̄ =


dc

1
dc

2
dc

3
−−−

e−

−νe

 ,10 =


0 uc

3 −uc
2 | −u1 −d1

−uc
3 0 uc

1 | −u2 −d2

uc
2 −uc

1 0 | −u3 −d3

−− −− −− −− −− −−
u1 u2 u3 | 0 −ec

d1 d2 d3 | ec 0

 .

The comparison of the matrix 10 with the matrix of the derivation operator DL of the algebra R shows the
similarity of the structures of these matrices. If we limit ourselves to the quark part of the matrix 10 (without
the electron ec), the similarity in structure becomes even larger. We think that this is another evidence in
favor of the fact that a ternary generalization of the Pauli’s exclusion principle and the algebra constructed
on this basis are an adequate description of the quark model.
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Algebra ternaarsete tsükliliste seoste, esituste ja kvarkmudeliga

Viktor Abramov, Stefan Groote ja Priit Lätt

Lähtudes Pauli tõrjutusprintsiibi üldistusest kvarkmudelile, konstrueerisime ühikuga assotsiatiivse algebra,
mille generaatorid rahuldavad kaht seost. Esiteks: kõigi generaatorite ruutude summa võrdub nulliga (bi-
naarne seos) ja teiseks: generaatorite kolmikute korrutiste tsükliliste permutatsioonide summa võrdub nul-
liga (ternaarne seos). Uurisime sellise algebra ehitust ning leidsime selle homogeensete monoomide lineaar-
katte mõõtme. Näitame, kuidas see algebra on seotud pöörete rühma taandumatute esitustega. Täpsemalt
osutub, et 10-mõõtmeline ruum, mille saame monoomide kolmikute kattest, on pöörete rühma taandumatu
unitaarne esitus. Saadud 10-mõõtmelise monoomide kolmikute katte jagame kahe 5-mõõtmelise alamruumi
otsesummaks, milleks kasutame ternaarseid q- ja q̄-kommutaatoreid, kus q, q̄ on ühikelemendi kolmandat
järku algjuured. Mõlemas otselahutuse alamruumis leidub taandumatu esitus so(3)→ su(5), mille maat-
riks on välja arvutatud. Saadud maatriksi struktuur viitab väljapakutud algebra ja Georgi–Glashow mudeli
võimalikele sarnasustele.
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