This paper simplifies the existing necessary and sufficient conditions for transformability of state equations into the observer form by state transformation.
1. Conte, G., Moog, C. H. and Perdon, A. M. Algebraic Methods for Nonlinear Control Systems. Springer, London, 2007.
https://doi.org/10.1007/978-1-84628-595-0
2. Krener, A. J. and Isidori, A. Linearization by output injection and nonlinear observers. Syst. Control Lett., 1983, 3(1), 47–52.
https://doi.org/10.1016/0167-6911(83)90037-3
3. Krener, A. J. and Respondek, W. Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim., 1985, 23(2), 197–216.
https://doi.org/10.1137/0323016
4. Lee, H. G. Verifiable conditions for discrete-time multioutput observer error linearizability. IEEE Trans. Autom. Control, 2019, 64(4), 1632–1639.
https://doi.org/10.1109/TAC.2018.2850285
5. Zhang, J., Feng, G. and Xu, H. Observer design for nonlinear discrete-time systems: Immersion and dynamic observer error linearization techniques. Int. J. Robust Nonlinear Control, 2010, 20(5), 504–514.
https://doi.org/10.1002/rnc.1443
6. Califano, C. and Moog, C. H. The observer error linearization problem via dynamic compensation. IEEE Trans. Autom. Control, 2014, 14(9), 2502–2508.
https://doi.org/10.1109/TAC.2014.2308606
7. Besancon, G. On output transformations for state linearization up to output injection. IEEE Trans. Autom. Control, 1999, 44(10), 1975–1981.
https://doi.org/10.1109/9.793789
8. Kaparin, V. and Kotta, Ü.Transformation of nonlinear discrete-time system into the extended observer form. Int. J. Control, 2018, 91(4), 848–858.
https://doi.org/10.1080/00207179.2017.1294264
9. Simha, A., Respondek, W., Kaldmäe, A., Kaparin, V. and Kotta, Ü. Intrinsic conditions for extended observer forms for non-linear systems. In IEEE Conference on Decision and Control, Miami Beach, FL, USA, 17–19 December 2018. IEEE, 1373–1378.
https://doi.org/10.1109/CDC.2018.8619122
10. Mullari, T. and Kotta, Ü. Transformation of nonliear discrete-time state equationsin to the observer form: extension to non-reversible case. Proc. Estonian Acad. Sci., 2021, 70(3), 235–247.
https://doi.org/10.3176/proc.2021.3.03
11. Mullari, T. and Kotta, Ü. Linearization of discrete-time control systems by state transformation. Proc. Estonian Acad. Sci., 2021, 70(1), 62–79.
https://doi.org/10.3176/proc.2021.1.09