ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Structure and properties of an Al alloy in as-cast state and after laser treatment; pp. 107–116
PDF | doi: 10.3176/proc.2016.2.07

Authors
Mariusz Król, Przemysław Snopiński, Błażej Tomiczek, Tomasz Tański, Wojciech Pakieła, Wojciech Sitek
Abstract

This work is focused on thermal analysis, metallurgical characterization, and laser treatment of an aluminium alloy. This paper contributes to a better understanding of non-equilibrium metallurgical character of aluminium alloys. The solidification of the aluminium dendritic network, the aluminium–silicon eutectic and iron- and magnesium-containing intermetallic phases are characterized. The influence of laser treatment on the structure and properties of the aluminium alloy was also determined. Moreover, to improve the mechanical properties and wear resistance of the surface layer, the tested alloys were subjected to surface treatment using a HPDL laser and simultaneous feeding of tungsten carbide particles into the molten pool of the EN AC-51500 aluminium alloy.

References

  1. Miller, W. Recent development in aluminium alloys for the automotive industry. Mater. Sci. Eng., 2008, 280(1), 37–49.
http://dx.doi.org/10.1016/S0921-5093(99)00653-X

  2. Krupinski, M., Dobrzański, L. A., Sokolowski, J. H., Kasprzak, W., and Byczynski, G. Methodology for automatic control of automotive Al-Si cast components. Mater. Sci. Forum, 2007, 539–543, 339–344.
http://dx.doi.org/10.4028/www.scientific.net/MSF.539-543.339

  3. Holmestad, R., Bjørge, R., Ehlers, F. J. H., Torsæter, M., Marioara, C. D., and Andersen, S. J. Characterization and structure of precipitates in 6xxx Aluminium Alloys. J. Phys. Conf. Ser., 2012, 371, 012082.
http://dx.doi.org/10.1088/1742-6596/371/1/012082

  4. Dobrzański, L. A., Tomiczek, B., Pawlyta, M., and Król, M. Aluminium AlMg1SiCu matrix composite materials reinforced with halloysite particles. Arch. Metall. Mater., 2014, 59(1), 335–338.
http://dx.doi.org/10.2478/amm-2014-0055

  5. Tomiczek, B., Pawlyta, M., Adamiak, M., and Dobrzański, L. A. Effect of milling time on crystallite size and microstructure of AA6061 composites fabricated via mechanical alloying. Arch. Metall. Mater., 2015, 60, 789–793.
http://dx.doi.org/10.1515/amm-2015-0208

  6. Tański, T. and Labisz, K. Electron microscope investigation of PVD coated aluminium alloy surface layer. Solid State Phenom., 2012, 186, 192–197.
http://dx.doi.org/10.4028/www.scientific.net/SSP.186.192

  7. Tański, T. Characteristics of hard coatings on AZ61 magnesium alloys. Stroj. Vestn.-J. Mech. E., 2013, 59(3), 165–174.
http://dx.doi.org/10.5545/sv-jme.2012.522

  8. Dobrzański, L. A., Tański, T., and Trzaska, J. Optimization of heat treatment conditions of magnesium cast alloys. Mater. Sci. Forum, 2010, 638–642, 1488–1493.
http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.1488

  9. Tański, T., Dobrzański, L. A., and Čížek, L. Influence of heat treatment on structure and properties of the cast magnesium alloys. Adv. Mat. Res., 2007, 15–17, 491–496.
http://dx.doi.org/10.4028/www.scientific.net/AMR.15-17.491

10. Dobrzański, L. A., Krupiński, M., Labisz, K., Krupińska, B., and Grajcar, A. Phases and structure characteristics of the near eutectic Al-Si-Cu alloy using derivative thermo analysis. Mater. Sci. Forum, 2010, 638–642, 475480.
http://dx.doi.org/10.4028/www.scientific.net/MSF.638-642.475

11. Dobrzański, L. A, Król, M., Tański, T., and Maniara, R. Thermal analysis of the MCMgAl9Zn1 magnesium alloy. Arch. Mat. Sci. Eng., 2008, 34(2), 113116.

12. Król, M., Tański, T., Matula, G., Snopiński, P., and Tomiczek, A. E. Analysis of crystallisation process of cast magnesium alloys based on thermal derivative analysis. Arch. Metall. Mater., 2015, 60, 2993–2999.
http://dx.doi.org/10.1515/amm-2015-0478

13. Król, M., Tański, T., and Sitek, W. Thermal analysis and microstructural characterization of Mg-Al-Zn system alloys. In Modern Technologies in Industrial Engineering (ModTech2015). IOP Conference Series: Materials Science and Engineering, 2015, 95, 012006.
http://dx.doi.org/10.1088/1757-899X/95/1/012006

14. Dobrzański, L. A., Tański, T., Malara, S., and Król, M. Structure and properties investigation of a magnesium alloy processed by heat treatment and laser surface treatment. Mater. Sci. Forum, 2011, 674, 1118.
http://dx.doi.org/10.4028/www.scientific.net/MSF.674.11

15. Englehardt, H., Hallstedt, B., Drue, M., Loeffler, A., Schick, M., and Rottenmayr, M. Solvus composition paths in multicomponent alloys experimental approach and correlation with Calphad calculations for the example Al–Mg–Si. Adv. Eng. Mater., 2012, 14(5), 319323.
http://dx.doi.org/10.1002/adem.201100265

16. Bäckerud, L., Chai, G., and Tamminen, J. Solidification Characteristics of Aluminum Alloys, Vol. 2: Foundry Alloys. AFS SkanAluminium, Stockholm, 1990.

17. Tański, T., Labisz, K., Krupińska, B., Krupiński, M., Król, M., Maniara, R., and Borek, W. Analysis of crystallization kinetics of cast aluminum–silicon alloy. J. Therm. Anal. Calorim., 2016, 123, 63–74.
http://dx.doi.org/10.1007/s10973-015-4871-y

18. Bäckerud, L., Król, E., and Tamminen, J. Solidification Characteristics of Aluminum Alloys, Vol. 1: Wrought Alloys. AFS SkanAluminium, Oslo, 1986.

19. Sokolowski, J. H., Kierkus, W. T., Kasprzak, M. S., and Kasprzak, W. J. (inventors). Method and Apparatus for Universal Metallurgical Simulation and Analysis. US patent, 7,354,491 B2. 2008, Apr. 8.

20. Dobrzański, L. A., Bonek, M., Piec, M., and Jonda, E. Diode laser modification of surface gradient layer properties of a hot-work tool steel. Mater. Sci. Forum, 2006, 532–533, 657–660.
http://dx.doi.org/10.4028/www.scientific.net/MSF.532-533.657

21. Mirski, Z. and Piwowarczyk, T. Analysis of adhesive properties of B2 hardmetal surface. Arch. Civ. Mech. Eng., 2009, 9(2), 93–104.
http://dx.doi.org/10.1016/S1644-9665(12)60062-4

22. Węglowski, M., Kwieciński, K., Krasnowski, K., and Jachym, R. Characteristics of Nd:YAG laser welded joints of dual phase steel. Arch. Civ. Mech. Eng., 2009, 9(4), 85–97.
http://dx.doi.org/10.1016/S1644-9665(12)60072-7

23. Wiśniewska-Weinert, H., Leshchynsky, V., Ignatev, M., Borowski, J., and Wiśniewski, T. Innovative technology for fabrication of antiwear layers for forging tools. Tribologia, 2011, 5, 239–248.

24. Klimpel, A. Laser Technologies. Silesian University of Technology, Gliwice, 2012.

25. Dobrzańska-Danikiewicz, D., Tański, T., and Domagała-Dubiel, J. Unique properties, development perspectives and expected applications of laser treated casting magnesium alloys. Arch. Civ. Mech. Eng., 2012, 12(3), 318–326.
http://dx.doi.org/10.1016/j.acme.2012.06.007

26. Dobrzański, L. A., Bonek, M., Hajduczek, E., and Klimpel, A. Application of high power diode laser (HPDL) for alloying of X40CrMoV5-1 steel surface layer by tungsten carbides. J. Mater. Process. Tech., 2004, 155–156, 1956–1963.
http://dx.doi.org/10.1016/j.jmatprotec.2004.04.058

27. Piec, M., Dobrzański, L. A., Labisz, K., Jonda, E., and Klimpel, A. Laser alloying with WC Ceramic Powder in hot work tool steel using a High Power Diode Laser (HPDL). Adv. Mat. Res., 2007, 15–17, 193198.
http://dx.doi.org/10.4028/www.scientific.net/AMR.15-17.193

28. Leschynsky, V., Wiśniewska-Weinert, H., Magda, J., Wiśniewski, T., and Rybak, T. Stanowisko do badań tribologicznych w wysokich temperaturach elementów łożysk z proszków spieków ze zmodyfikowaną warstwą wierzchnią. Tribologia, 2010, 4, 289292 (in Polish

Back to Issue