ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Homogeneous deposition of copper oxide on mesoporous 1D alumina nanofibres by combustion approach; pp. 97–100
PDF | doi: 10.3176/proc.2016.2.06

Authors
Khachatur Kirakosyan, Marina Aghayan, Miguel A. Rodríguez, Masoud Taleb, Irina Hussainova
Abstract

Copper oxide-doped alumina nanofibres were fabricated by the solution combustion method. The bundled alumina nanofibres were impregnated with a copper nitrate–glycine (oxidizer–fuel) solution and heat-treated in an open-air environment at 400 °C for 30 min. The microstructure and phase composition of the final product were characterized by XRD, SEM, and EDS analyses. A uniform distribution of a fine-grained CuO film on the surface of gamma-alumina nanofibres was revealed. The obtained results showed a dramatical effect of the amount of fuel, the ratios of fuel to oxidizer and fibres to Cu(II) ions in the reaction mixture on the particle size of the combustion product, its phase composition, and microstructure morphology.

References

  1. Li, D., Hu, J., Wu, R., and Lu, J. G. Conductometric chemical sensor based on individual CuO nanowires. Nanotechnology, 2010, 21(48), 485502–485508.
http://dx.doi.org/10.1088/0957-4484/21/48/485502

  2. Rahman, M. M., Ahammad, A., Jin, J.-H., Ahn, S. J., and Lee, J.-J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors, 2010, 10(5), 4855–4886.
http://dx.doi.org/10.3390/s100504855

  3. Wang, S., Hsiao, C., Chang, S., Lam, K., Wen, K., Hung, S., et al. A CuO nanowire infrared photo­detector. Sensor. Actuat. A-Phys., 2011, 171(2), 207–211.

  4. Venkatachalam, S., Zhu, H., Masarapu, C., Hung, K., Liu, Z., Suenaga, K., and Wei, B. In-situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. ACS Nano, 2009, 3(8), 2177–2184.
http://dx.doi.org/10.1021/nn900432u

  5. Xu, Y., Chen, D., and Jiao, X. Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J. Phys. Chem. B, 2005, 109(28), 13561–13566.
http://dx.doi.org/10.1021/jp051577b

  6. Zhang, X., Shi, W., Zhu, J., Kharistal, D. J., Zhao, W., Lalia, B. S., et al. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano, 2011, 5(3), 2013–2019.
http://dx.doi.org/10.1021/nn1030719

  7. Yu, X.-Y., Xu, R.-X., Gao, C., Luo, T., Jia, Y., Liu, J.-H., and Huang, X.-J. Novel 3D hierarchical cotton-candy-like CuO: surfactant-free solvothermal synthesis and application in As(III) removal. ACS Appl. Mater. Interfaces, 2012, 4(4), 1954–1962.
http://dx.doi.org/10.1021/am201663d

  8. Zhou, K., Wang, R., Xu, B., and Li, Y. Synthesis, characterization and catalytic properties of CuO nano­crystals with various shapes. Nanotechnology, 2006, 17(15), 3939.
http://dx.doi.org/10.1088/0957-4484/17/15/055

  9. Xu, L., Sithambaram, S., Zhang, Y., Chen, C.-H., Jin, L., Joesten, R., and Suib, S. L. Novel urchin-like CuO synthesized by a facile reflux method with efficient olefin epoxidation catalytic performance. Chem. Mater., 2009, 21(7), 1253–1259.
http://dx.doi.org/10.1021/cm802915m

10. Zhou, K. and Li, Y. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed., 2012, 51(3), 602–613.
http://dx.doi.org/10.1002/anie.201102619

11. Xu, J., Ji, W., Shen, Z., Tang, S., Ye, X., Jia, D., and Xin, X. Preparation and characterization of CuO nano­crystals. J. Solid State Chem., 1999, 147(2), 516–519.
http://dx.doi.org/10.1006/jssc.1999.8409

12. Zhang, Q., Li, Y., Xu, D., and Gu, Z. Preparation of silver nanowire arrays in anodic aluminum oxide templates. J. Mater. Sci. Lett., 2001, 20(10), 925–927.
http://dx.doi.org/10.1023/A:1010984917974

13. Xu, C., Liu, Y., Xu, G., and Wang, G. Preparation and characterization of CuO nanorods by thermal decomposition of CuC2O4 precursor. Mater. Res. Bull., 2002, 37(14), 2365–2372.
http://dx.doi.org/10.1016/S0025-5408(02)00848-6

14. Yin, A., Li, J., Jian, W., Bennett, A., and Xu, J. Fabrication of highly ordered metallic nanowire arrays by electro­deposition. Appl. Phys. Lett., 2001, 79(7), 1039–1041.
http://dx.doi.org/10.1063/1.1389765

15. Okuyama, K., Lenggoro, W., and Iwaki, T. Nanoparticle preparation and its application – a nanotechnology particle project in Japan. In International Conference on MEMS, NANO and Smart Systems, 2004. IEEE, 2004, 369–372.

16. Mukasyan, A. S., Epstein, P., and Dinka, P. Solution combustion synthesis of nanomaterials. P. Combust. Inst., 2007, 31(2), 1789–1795.
http://dx.doi.org/10.1016/j.proci.2006.07.052

17. Aruna, S. T. and Mukasyan, A. S. Combustion synthesis and nanomaterials. Curr. Opin. Solid St. M., 2008, 12(3), 44–50.
http://dx.doi.org/10.1016/j.cossms.2008.12.002

18. Patil, K. C., Hegde, M., Rattan, T., and Aruna, S. Chemistry of Nanocrystalline Oxide Materials-Combustion Synthesis, Properties and Applications. World Scientific, New Jersey, 2008.
http://dx.doi.org/10.1142/6754

19. Aghayan, M., Voltsihhin, N., Rodríguez, M. A., Rubio-Marcos, F., Dong, M., and Hussainova, I. Functionali­zation of gamma-alumina nanofibers by alpha-alumina via solution combustion synthesis. Ceram. Int., 2014, 40(8), 12603–12607.
http://dx.doi.org/10.1016/j.ceramint.2014.04.087

20. Aghayan, M., Hussainova, I., Gasik, M., Kutuzov, M., and Friman, M. Coupled thermal analysis of novel alumina nanofibers with ultrahigh aspect ratio. Thermochim. Acta, 2013, 574, 140–144.
http://dx.doi.org/10.1016/j.tca.2013.10.010

21. Zeldovich, Ya. B., Barenblatt, G. I., Librovich, V. B., and Makhviladze, G. M. The Mathematical Theory of Combustion and Explosions. Consultants Bureau, New York, 1985, 22–26.
http://dx.doi.org/10.1007/978-1-4613-2349-5

Back to Issue