ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Verification of modelled locations of coastal areas exposed to current-driven pollution in the Gulf of Finland by using surface drifters; pp. 405–416
PDF | doi: 10.3176/proc.2015.3S.11

Authors
Bert Viikmäe, Tomas Torsvik, Tarmo Soomere
Abstract

Statistical properties of the drift of floating items from the major fairway to the coast and numerically simulated transport of pollution by surface currents to the nearshore are compared for the Gulf of Finland. The comparison is based on tracks of 23 surface drifters that crossed the fairway in the central part of the gulf in 2011–2014 and 17 280 simulated trajectories of passive virtual parcels with starting points in the same section of the fairway and evaluated using velocity fields from the Rossby Centre Ocean (RCO) model in 2000–2004. More than 25% of the drifters that crossed the major fairway in the area north and north-west of Tallinn reached either the southern (Estonian) or northern (Finnish) coast. This probability matches similar estimates for single water parcels that are locked in the surface layer and exclusively carried by simulated currents. The probability of reaching the Estonian and Finnish nearshore by simulated parcels or the coast by drifters is roughly equal. Both surface drifters and virtual parcels generally drifted to the west before they reached the coast or nearshore, except for surface drifters that arrived on the Estonian coast.

References

 

  1. Ambjörn, C. Seatrack Web, forecasts of oil spills, a new version. Environ. Res. Eng. Manage., 2007, 3(41), 60–66.

  2. Andrejev, O., Myrberg, K., Alenius, P., and Lundberg, P. A. Mean circulation and water exchange in the Gulf of Finland – a study based on three-dimensional modeling. Boreal Environ. Res., 2004, 9, 1–16.

  3. Ardhuin, F., Mariė, L., Rascle, N., and Forget, P. Observation and estimation of Lagrangian, Stokes and Eulerian currents induced by wind and waves at the sea surface. J. Phys. Oceanogr., 2009, 39, 2820–2838.
http://dx.doi.org/10.1175/2009JPO4169.1

  4. Brickman, D. and Smith, P. C. Lagrangian stocastic modeling in coastal oceanography. J. Atmos. Ocean. Technol., 2002, 84, 83–99.
http://dx.doi.org/10.1175/1520-0426(2002)019<0083:LSMICO>2.0.CO;2

  5. Burgherr, P. In-depth analysis of accidental oil spills from tankers in the context of global spill trends from all sources. J. Hazard. Mater., 2007, 140, 245–256.
http://dx.doi.org/10.1016/j.jhazmat.2006.07.030

  6. Chrastansky, A. and Callies, U. Model-based long-term reconstruction of weather-driven variations in chronic oil pollution along the German North Sea coast. Mar. Poll. Bull., 2009, 58, 967–975.
http://dx.doi.org/10.1016/j.marpolbul.2009.03.009

  7. Ciappa, A. and Costabile, S. Oil spill hazard assessment using a reverse trajectory method for the Egadi marine protected area (Central Mediterranean Sea). Mar. Poll. Bull., 2014, 84, 44–55.
http://dx.doi.org/10.1016/j.marpolbul.2014.05.044

  8. Delpeche-Ellmann, N. C. and Soomere, T. Investigating the Marine Protected Areas most at risk of current-driven pollution in the Gulf of Finland, the Baltic Sea, using a Lagrangian transport model. Mar. Poll. Bull., 2013, 67, 121–129.
http://dx.doi.org/10.1016/j.marpolbul.2012.11.025

  9. Delpeche-Ellmann, N., Torsvik, T., and Soomere, T. Tracks of surface drifters from a major fairway to marine protected areas in the Gulf of Finland. Proc. Estonian Acad. Sci., 2015, 64, 226–233.
http://dx.doi.org/10.3176/proc.2015.3.04

10. De Vries, P. and Döös, K. Calculating Lagrangian trajectories using time-dependent velocity fields. J. Atmos. Ocean. Technol., 2001, 18, 1092–1101.
http://dx.doi.org/10.1175/1520-0426(2001)018<1092:CLTUTD>2.0.CO;2

11. Döös, K. Interocean exchange of water masses. J. Geophys. Res.–Oceans, 1995, 100(C7), 13499–13514.
http://dx.doi.org/10.1029/95JC00337

12. Döös, K. and Engqvist, A. Assessment of water exchange between a discharge region and the open sea – a comparison of different methodological concepts. Estuar. Coast. Shelf Sci., 2007, 74, 585–597.
http://dx.doi.org/10.1016/j.ecss.2007.05.022

13. Döös, K., Rupolo, V., and Brodeau, L. Dispersion of surface drifters and model simulated trajectories. Ocean Mod., 2011, 39, 301–310.
http://dx.doi.org/10.1016/j.ocemod.2011.05.005

14. Döös, K., Kjellsson, J., and Jönsson, B. TRACMASS – a Lagrangian trajectory model. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, Cham, 2013, 225–249.
http://dx.doi.org/10.1007/978-3-319-00440-2_7

15. Drivdal, M., Broström, G., and Christensen, K. H. Wave-induced mixing and transport of buoyant particles: application to the Statfjord oil spill. Ocean Sci., 2014, 10(6), 977–991.
http://dx.doi.org/10.5194/os-10-977-2014

16. Eide, M. S., Endresen, Ø., Brett, P. E., Ervik, J. L., and Røang, K. Intelligent ship traffic monitoring for oil spill prevention: risk based decision support building on AIS. Mar. Poll. Bull., 2007, 54, 145–148.
http://dx.doi.org/10.1016/j.marpolbul.2006.11.004

17. Fingas, M. (ed.). Handbook of Oil Spill Science and Technology. Wiley-Blackwell, 2015.

18. Gästgifvars, M., Lauri, H., Sarkanen, A.-K., Myrberg, K., Andrejev, O., and Ambjörn, C. Modelling surface drifting of buoys during a rapidly-moving weather front in the Gulf of Finland, Baltic Sea. Estuar. Coast. Shelf Sci., 2006, 70, 567–576.
http://dx.doi.org/10.1016/j.ecss.2006.06.010

19. Hackett, B., Breivik, O., and Wettre, C. Forecasting the drift of objects and substances in the ocean. In Ocean Weather Forecasting: An Integrated View of Oceanography (Chassignet, E. P. and Verron, J., eds). Springer, 2006, 507–523.
http://dx.doi.org/10.1007/1-4020-4028-8_23

20. Höglund, A. and Meier, H. E. M. Environmentally safe areas and routes in the Baltic proper using Eulerian tracers. Mar. Poll. Bull., 2012, 64, 1375–1385.
http://dx.doi.org/10.1016/j.marpolbul.2012.04.021

21. Kjellsson, J. and Döös, K. Surface drifters and model trajectories in the Baltic Sea. Boreal Environ. Res., 2012, 17(6), 447–459.

22. Knapp, S. and van de Velden, M. Global ship risk profiles: safety and the marine environment. Transp. Res. D Transp. Environ., 2011, 16(8), 595–603.

23. Lehmann, A., Myrberg, K., and Höflich, K. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990–2009. Oceanologia, 2012, 54, 369–393.
http://dx.doi.org/10.5697/oc.54-3.369

24. Leppäranta, M. and Myrberg, K. Physical Oceanography of the Baltic Sea. Springer, Berlin, 2009.
http://dx.doi.org/10.1007/978-3-540-79703-6

25. Lu, X., Soomere, T., Stanev, E. V., and Murawski, J. Identification of the environmentally safe fairway in the South-Western Baltic Sea and Kattegat. Ocean Dyn., 2012, 62(6), 815–829.
http://dx.doi.org/10.1007/s10236-012-0532-x

26. Meier, H. E. M. On the parametrization of mixing in three-dimensional Baltic Sea models. J. Geophys. Res.–Oceans, 2001, 106(C12), 30997–31016.
http://dx.doi.org/10.1029/2000JC000631

27. Meier, H. E. M., Döscher, R., and Faxén, T. A multiprocessor coupled ice-ocean model for the Baltic Sea: application to salt inflow. J. Geophys. Res.–Oceans, 2003, 108(C8), Art. No. 3273.
http://dx.doi.org/10.1029/2000JC000521

28. Montewka, J., Krata, P., Goerlandt, F., Mazaheri, A., and Kujala, P. Marine traffic risk modelling – an innovative approach and a case study. Proc. Inst. Mech. Eng. Part O: J. Risk. Reliab., 2011, 225, 307–322.
http://dx.doi.org/10.1177/1748006x11399988

29. Montewka, J., Weckström, M., and Kujala, P. A probabilistic model estimating oil spill clean-up costs – a case study for the Gulf of Finland. Mar. Poll. Bull., 2013, 76, 61–71.
http://dx.doi.org/10.1016/j.marpolbul.2013.09.031

30. Murawski, J. and Woge Nielsen, J. Applications of an oil drift and fate model for fairway design. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, Cham, 2013, 367–415.
http://dx.doi.org/10.1007/978-3-319-00440-2_11

31. Myrberg, K. and Soomere, T. The Gulf of Finland, its hydrography and circulation dynamics. In Preventive Methods for Coastal Protection (Soomere, T. and Quak, E., eds). Springer, Cham, 2013, 181–222.
http://dx.doi.org/10.1007/978-3-319-00440-2_6

32. Otero, P., Ruiz-Villarreal, M., Allen-Perkins, S., Vila, B., and Cabanas, J. M. Coastal exposure to oil spill impacts from the Finisterre Traffic Separation Scheme. Mar. Poll. Bull., 2014, 85, 67–77.
http://dx.doi.org/10.1016/j.marpolbul.2014.06.020

33. Reed, M., Turner, C., and Odulo, A. The role of wind and emulsification in modelling oil spill and surface drifter trajectories. Spill Sci. Technol. Bull., 1994, 1(2), 143–157.
http://dx.doi.org/10.1016/1353-2561(94)90022-1

34. Sonninen, S., Nuutinen, M., and Rosqvist, T. Development Process of the Gulf of Finland Mandatory Ship Reporting System. VTT Publications 614. VTT Technical Research Centre of Finland, 2006.

35. Soomere, T. and Quak, E. On the potential of reducing coastal pollution by a proper choice of the fairway. J. Coastal Res., 2007, 50, 678–682.

36. Soomere, T. and Quak, E. (eds). Preventive Methods for Coastal Protection: Towards the Use of Ocean Dynamics for Pollution Control. Springer, Cham, 2013.
http://dx.doi.org/10.1007/978-3-319-00440-2

37. Soomere, T., Myrberg, K., Leppäranta, M., and Nekrasov, A. The progress in knowledge of physical oceano­graphy of the Gulf of Finland: a review for 1997–2007. Oceanologia, 2008, 50, 287–362.

38. Soomere, T., Viikmäe, B., Delpeche, N., and Myrberg, K. Towards identification of areas of reduced risk in the Gulf of Finland, the Baltic Sea. Proc. Estonian. Acad. Sci., 2010, 59, 156–165.
http://dx.doi.org/10.3176/proc.2010.2.15

39. Soomere, T., Andrejev, O., Myrberg, K., and Sokolov, A. The use of Lagrangian trajectories for the identification of the environmentally safe fairways. Mar. Poll. Bull., 2011, 62, 1410–1420.
http://dx.doi.org/10.1016/j.marpolbul.2011.04.041

40. Soomere, T., Delpeche, N., Viikmäe, B., Quak, E., Meier, H. E. M., and Döös, K. Patterns of current-induced transport in the surface layer of the Gulf of Finland. Boreal Environ. Res., 2011, 16(Suppl. A), 49–63.

41. Soomere, T., Viidebaum, M., and Kalda, J. On dispersion properties of surface motions in the Gulf of Finland. Proc. Estonian Acad. Sci., 2011, 60, 269–279.
http://dx.doi.org/10.3176/proc.2011.4.07

42. Soomere, T., Döös, K., Lehmann, A., Meier, H. E. M., Murawski, J., Myrberg, K., and Stanev, E. The potential of current- and wind-driven transport for environmental management of the Baltic Sea. Ambio, 2014, 43, 94–104.
http://dx.doi.org/10.1007/s13280-013-0486-3

43. Stankiewicz, M. and Vlasov, N. (eds). Ensuring Safe Shipping in the Baltic. Helsinki Commission, Helsinki, 2009.

44. Torsvik, T. and Kalda, J. Analysis of surface current properties in the Gulf of Finland using data from surface drifters. In 2014 IEEE/OES Baltic International Symposium, Tallinn, Estonia. IEEE, 2014.
http://dx.doi.org/10.1109/BALTIC.2014.6887845

45. Vandenbulcke, L., Beckers, J., Lenartz, F., Barth, A., Poulain, P., Aidonidis, M., et al. Super-ensemble techniques: application to surface drift prediction. Prog. Oceanogr., 2009, 82, 149–167.
http://dx.doi.org/10.1016/j.pocean.2009.06.002

46. Viikmäe, B. and Soomere, T. Spatial pattern of current-driven hits to the nearshore from a major marine highway in the Gulf of Finland. J. Mar. Syst., 2014, 129, 106–117.
http://dx.doi.org/10.1016/j.jmarsys.2013.06.014

47. Viikmäe, B., Soomere, T., Viidebaum, M., and Berezovski, A. Temporal scales for transport patterns in the Gulf of Finland. Estonian J. Eng., 2010, 16, 211–227.
http://dx.doi.org/10.3176/eng.2010.3.02

48. Viikmäe, B., Torsvik, T., and Soomere, T. Impact of horizontal eddy-diffusivity on Lagrangian statistics for coastal pollution from a major marine fairway. Ocean Dyn., 2013, 63(5), 589–597.
http://dx.doi.org/10.1007/s10236-013-0615-3

 

Back to Issue