ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Spectral aerosol optical depth prediction by some broadband models. Validation with AERONET observations; pp. 404–416
PDF | doi: 10.3176/proc.2014.4.06

Authors
Martin Kannel, Hanno Ohvril, Oleg Okulov, Kaidi Kattai, Lennart Neiman
Abstract

A comprehensive investigation on the performance of aerosol optical depth at 500 nm (AOD500) predictions using broadband physical and statistical models is detailed here. Seven simple models and one more complicated model were selected. A special database with more than 26 000 broadband (direct solar beam) and spectral (AODl) instantaneous observations at clear solar disc during 10 years (2002–2011) at Tõravere (Estonia) was compiled for the intercomparison. The database allows analysing the variability and climatological behaviour of several column parameters: coefficient of broadband transparency, precipitable water, AOD500, and the Ångström wavelength exponent (α). A statistical AOD500 model is finally recommended. It uses only two input parameters: coefficient of column broadband transparency and precipitable water. Two models from the set enabled variation of Ångström α. However, consideration of a priori known instantaneous α values did not improve predictions.

References

Abakumova, G. M. and Gorbarenko, E. V. 2008. Atmospheric Transparency in Moscow During the Last 50 Years and Its Variability on the Russian Territory. LKI Publishing (in Russian).

AERONET Inversion Products, 2010. http:// aeronet.gsfc.nasa.gov/new_web/Documents/Inversion_products_V2.pdf (accessed 10.10.2013).

Carlund, T., Landelius, T., and Josefsson, W. 2003. Com­parison and uncertainty of aerosol optical depth estimates derived from spectral and broadband measure­ments. J. Appl. Meteor., 42, 1598-1610.
http://dx.doi.org/10.1175/1520-0450(2003)042<1598:CAUOAO>2.0.CO;2

Chubarova, N. E. 2005. Optical and radiative properties of smoke aerosol from AERONET data. In Handbook of Moscow Environmental and Climatic Features. Vol. 1. Applied Climatic Parameters, Air Pollution Monitor­ing, Dangerous Weather Phenomena, Expected Tendencies in the XXI Century, pp. 127–132. Geo­graphy Department of MSU (in Russian).

Chubarova, N. E., Gorbarenko, E. V., Nezval¢, E. I., and Shilovtseva, O. A. 2011a. Aerosol and radiation characteristics of the atmosphere during forest and peat fires in 1972, 2002 and 2010 in the Region of Moscow. Izvestiya RAN. Fizika Atmosfery i Okeana, 47(6), 790–800 (in Russian).

Chubarova, N. E., Gorbarenko, E. V., Nezval¢, E. I., and Shi­lovtseva, O. A. 2011b. Aerosol and radiation charac­teristics of the atmosphere during forest and peat fires in 1972, 2002 and 2010 in the Region of Moscow. Izvestiya, Atmospheric and Oceanic Physics, 47(6), 729–738. Pleiades Publishing, Ltd (translation from Russian).
http://dx.doi.org/10.1134/S0001433811060028

Garg, H. P. and Prakash, J. 2006. Solar Energy. Fundamentals and Applications. Tata McGraw-Hill Publishing Company Limited, New Delhi.

Gorbarenko, E. V. and Rublev, A. N. 2013. Correction of aerosol optical thickness succession under strong atmospheric turbidity. In Proceedings of International Symposium “Atmospheric Radiation and Dynamics” (ISARD-2013), 24–27 June 2013, Saint-Petersburg, Saint-Petersburg State University, p. 105.

Gueymard, C. 1993. Critical analysis and performance assess­ment of clear sky solar irradiance models using theoretical and measured data. Solar Energy, 51(2), 121–138.
http://dx.doi.org/10.1016/0038-092X(93)90074-X

Gueymard, C. 1998. Turbidity determination from broadband irradiance measurements: a detailed multicoefficient approach. J. Appl. Meteor., 37, 414–435.
http://dx.doi.org/10.1175/1520-0450(1998)037<0414:TDFBIM>2.0.CO;2

Gueymard, C. 2013. Aerosol turbidity derivation from broad­band irradiance measurements: methodological advances and uncertainty analysis. In Solar 2013 Con­ference. Baltimore, MD. American Solar Energy Society.

Holben, B., Eck, T. F., Slutsker, I. Tanré, D., Buis, J. P., Setzer, A. et al. 1998. AERONET - a federated instru­ment network and data archive for aerosol charac­teriza­tion. Remote Sens. Environ., 66, 1-16.
http://dx.doi.org/10.1016/S0034-4257(98)00031-5

Iqbal, M. 1983. An Introduction to Solar Radiation. Academic Press.

Kallis, A., Russak, V., and Ohvril, H. 2005. 100 years of solar radiation measurements in Estonia. In Report of the 8th Session of the Baseline Surface Radiation Network (BSRN) Workshop and Scientific Review, Exeter, UK, 26-30 July 2004, pp. C1-C4. World Climate Research Programme, WMO, WCRP Informal Report No. 4/2005, March 2005.

Kannel, M. 2007. Atmosfääriaerosooli spektraalse optilise paksuse modelleerimine. Master thesis. University of Tartu, Estonia.

Kannel, M., Ohvril, H., Teral, H., Russak, V., and Kallis, A. 2007. A simple broadband parameterization of columnar aerosol optical thickness. Proc. Estonian Acad. Sci. Biol. Ecol., 56, 57–68.

Kannel, M., Ohvril, H., and Okulov, O. 2012. A shortcut from broadband to spectral aerosol optical depth. Proc. Estonian Acad. Sci., 61, 266–278.
http://dx.doi.org/10.3176/proc.2012.4.02

Lenoble, J. 1993. Atmospheric Radiative Transfer. A. Deepak, Hampton, Virginia, USA.

Liou, K. N. 2002. An Introduction to Atmospheric Radiation. Academic Press.

Okulov, O. and Ohvril, H. 2010. Column Transparency and Precipitable Water in Estonia. Variability During the Last Decades. Lambert Acad. Publ., Saarbrücken, Germany.

Okulov, O., Ohvril, H., and Kivi, R. 2002. Atmospheric pre­cipitable water in Estonia, 1990-2001. Boreal Environ. Res., 7, 291-300.

Ohvril, H., Okulov, O., Teral, H., and Teral, K. 1999. The atmospheric integral transparency coefficient and the Forbes effect. Solar Energy, 66(4), 305–317.
http://dx.doi.org/10.1016/S0038-092X(99)00031-6

Ohvril, H., Teral, H., Neiman, L., Kannel, M., Uustare, M., Tee, M., et al. 2009. Global dimming and brightening versus atmospheric column transparency, Europe, 1906-2007. J. Geophys. Res., 114, 1-17.
http://dx.doi.org/10.1029/2008JD010644

O’Neill, N. T., Eck, T. F., Holben, B. N., Smirnov, A., Dubo­vik, O., and Royer, A. 2001. Bimodal size distribution influences on the variation of Angström derivatives in spectral and optical depth space. JGR, 106(D9), 9787-9806.
http://dx.doi.org/10.1029/2000JD900245

Tarasova, T. A. and Yarkho, E. V. 1991a. Determination of atmospheric aerosol optical thickness from land-based measurements of integral direct solar radiation. Meteoro­logiya i gidrologiya, 12, 66–70 (in Russian).

Tarasova, T. A. and Yarkho, E. V. 1991b. Determination of atmospheric aerosol optical thickness from land-based measurements of integral direct solar radiation. In Soviet Meteorology and Hydrology, 12, pp. 53–58. Alerton Press, New York (translation from Russian).

Toledano, C., Cachorro, V. E., Sorribas, M., Berjón, A., Morena de la, B. A., Frutos de, A. M., and Gouloub, P. 2007. Aerosol optical depth and Ångström exponent climatology at El Arenosillo AERONET site (Huelva, Spain). Quart. J. Roy. Meteor. Soc., 133, 795–807.
http://dx.doi.org/10.1002/qj.54

Back to Issue