ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Application of essential oils of thyme as a natural preservative in leather tanning; pp. 220–227
PDF | doi: 10.3176/proc.2012.3.12

Authors
Justa Širvaitytė, Jūratė Šiugždaitė, Virgilijus Valeika, Edita Dambrauskiene
Abstract

The aim of this study was to investigate the possibility of using essential oils of Thymus vulgaris as an alternative preservative for chromed leather. The differences between the chemical composition of commercial and pure essential oils of thyme were determined. It was observed that these differences have an influence on the antibacterial activity of essential oils. Gram-positive bacteria were found to be more sensitive to the essential oils of thyme than Gram-negative bacteria. The bacteria Pseudomonas aeruginosa had a low sensitivity to the action of the selected essential oils of thyme, but the leather samples treated with the essential oils of thyme remained resistant to the action of these bacteria. As the main result of this study, it was concluded that the essential oil of thyme could be used as a preservation agent in the leather tanning industry. The leather preserved with 2-(thiocyanomethylthio)benzothiazole had weaker protection after four weeks compared to the samples treated with the essential oil of thyme when the amount of the used essential oil was not less than 3% of the wet-blue mass. The essential oil of thyme was the more active component in the mixture of essential oil and synthetic biocide used for the preservation of leather.

References

  1. Gao, Y. and Cranston, R. Recent advances in antimicrobial treatment of textiles. Textiles Research Journal, 2008, 78, 60–65.
http://dx.doi.org/10.1177/0040517507082332

  2. Lim, S. H. and Hudson, S. M. Application of a fiber-reactive chitosan derivative to cotton fabric as an antimicrobial textile finish. Carbohydrate Polymers, 2004, 56, 227–229.
http://dx.doi.org/10.1016/j.carbpol.2004.02.005

  3. Annamalai, T., Rajkumar, G. A., Arunasri, N., and Perumal, P. T. Synthesis and fungicidal evaluation of compounds analogous to 1,3-oxazine. J. Soc. Leather Technol. Chem., 1997, 81, 201–205.

  4. Adminis, U., Huynh, C., and Money, C. A. The need for improved fungicides for wet-blue. J. Soc. Leather Technol. Chem., 2002, 86, 118–121.

  5. Directive 2009/251/EC. Official Journal of the European Union. Brussels.

  6. Reregistration Eligibility Decision for 2-(Thiocyano­methylthio) benzothiazole (TCMTB). United States Environ­mental Protection Agency. Prevention, Pesticides and Toxic Substances, EPA739-R-05-003, August 2006.

  7. Dadalioglu, I. and Evrendilek, G. A. Chemical composi­tions and antibacterial effect of essential oils of Turkish Oregano (Origanum minutiflorum), Bay Laurel (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on common foodborne pathogens. J. Agric. Food Chem., 2004, 52, 8255–8259.
http://dx.doi.org/10.1021/jf049033e

  8. Edris, A. E. Pharmaceutical and therapeutic potentials of essential oils and their individual volatile constituents: a review. Phytother. Res., 2007, 21, 308–323.
http://dx.doi.org/10.1002/ptr.2072

  9. Madsen, H. L., Nielsen, B. R., Bertelsen, G., and Skibsted, L. H. Screening of antioxidative activity of spices. A comparison between assays based on ESR spin trapping and electrochemical measurement of oxygen consumption. Food Chem., 1996, 57, 331–337.
http://dx.doi.org/10.1016/0308-8146(95)00248-0

10. Voitkevich, S. A. Efirnye masla dlya parfyumerii i aroma­terapii [Essential Oils for Perfumery and Aroma­therapy]. Pishchevaya promyshlennost¢, Moscow, 1999 (in Russian).

11. Huang, D., Ou, B., and Prior, R. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem., 2005, 53, 1841–1856.
http://dx.doi.org/10.1021/jf030723c

12. Kahkonen, M. P., Hopia, A. I., Vuorela, H. J., Rauha, J. P., Pihlaja, K., Kujala, T. S., and Heinonen, M. Anti­oxidant activity of plant extracts containing phenolic com­pounds. J. Agric. Food Chem., 1999, 47, 3954–3962.
http://dx.doi.org/10.1021/jf990146l

13. Lee, K. G. and Shibamoto, T. Determination of antioxidant potential of volatile extracts isolated from various herbs and spices. J. Agric. Food Chem., 2002, 50, 49474952.
http://dx.doi.org/10.1021/jf0255681

14. Misharina, T. A. and Samusenko, A. L. Antioxidant pro­perties of essential oils from lemon, grapefruit, coriander, clove, and their mixtures. Appl. Biochem. Microbiol., 2008, 45, 438–442.
http://dx.doi.org/10.1134/S0003683808040182

15. Guillén, M. D. and Manzanos, M. J. Contribution to study Spanish wild-growing fennel (Foeniculum vulgare Mill.) as a source of flavour compounds. Chem. Mikro­biol. Technol. Lebensm., 1994, 16, 141–145.

16. Jordán, M. J., Martínez, R. M., Cases, M. A., and Soto­mayor, J. A. Watering level effect on Thymus hyemalis Lange essential oil yield and composition. J. Agric. Food Chem., 2003, 51, 5420–5427.
http://dx.doi.org/10.1021/jf034335m

17. Sotomayor, J. A., Martinez, R. M., Garcia, A. J., and Jordan, M. J. Thymus zygis subsp. gracilis: watering level effect on phytomass production and essential oil quality. J. Agric. Food Chem., 2004, 52, 5418–5424.
http://dx.doi.org/10.1021/jf0496245

18. Rasooli, I. and Mirmostafa, S. A. Antibacterial properties of Thymus pubescens and Thymus serpyllum essential oils. Fitoterapia, 2002, 73, 244–250.
http://dx.doi.org/10.1016/S0367-326X(02)00064-3

19. Karaman, S. and Ilcim, A. Composition of the essential oils of S. vermifolia. Pharm. Biol., 2001, 40, 67–69.

20. Bauer, A. W., Kirby, W. M., Sherris, J. C., and Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45, 493–496.

21. AOAC. Volatile oil in spices. In Official Methods of Analysis. 15th ed. AOAC Inc., Arlington, VA, 1990, 1001.

22. Standard ISO 5398-1:2007. Leather – Chemical determina­tion of chromic oxide content – Part 1: Quantification by titration.

23. Standard ISO 3380:2002. Leather – Physical and mech­anical tests – Determination of shrinkage tem­perature up to 100 degrees C.

24. Standard ISO FDIS 3376. Leather – Physical and mech­anical tests – Determination of tensile strength and per­centage extension.

25. Standard ISO 4048:2008. Leather – Chemical tests – Determina­tion of matter soluble in dichloromethane and free fatty acid content.

26. Christensen, L. P. and Grevsen, K. Effect of development stage at harvest on the composition and yield of essential oils from thyme and oregano. Developments in Food Science, 2006, 43, 261264.
http://dx.doi.org/10.1016/S0167-4501(06)80062-2

27. Marotti, M., Dellacecca, V., Piccaglia, R., and Giova­nelli, E. Agronomic and chemical evaluation of three “varieties” of Foeniculum vulgare Mill. In Materials of First World Congress on Medicinal and Aromatic Plants for Human Welfare. Maastricht, Netherlands, 1992, 19–25.

28. Aligiannis, N., Kalpoutzakis, E., Mitaku, S., and Chinou, I. B. Composition and antimicrobial activity of the essential oils of two Origanum species. J. Agric. Food Chem., 2001, 49, 4168–4170.
http://dx.doi.org/10.1021/jf001494m

29. Panizi, L., Flamini, G., Cioni, P. L., and Morelli, I. Com­position and antimicrobial properties of essential oils of four Mediterranean Lamiaceae. J. Ethnopharm., 1993, 39, 167–170.
http://dx.doi.org/10.1016/0378-8741(93)90032-Z

30. Sivropoulou, A., Papanikolaou, E., Nikolaou, C., Kok­kini, S., Lanaras, T., and Arsenakis, M. Antimicrobial and cytotoxic activities of Origanum essential oils. J. Agric. Food Chem., 1996, 44, 1202–1205.
http://dx.doi.org/10.1021/jf950540t

31. Burt, S. Essential oils: their antibacterial properties and potential applications in foods – a review. Int. J. Food Microbiol., 2004, 94, 223253.
http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022

32. Dorman, H. J. D. and Deans, S. G. Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J. Appl. Microbiol., 2000, 88, 308–316.
http://dx.doi.org/10.1046/j.1365-2672.2000.00969.x

33. Tabanca, N., Kırımer, N., Demirci, B., Demirci, F., and Başer, K. H. C. Composition and the antimicrobial activity of the essential oils of Micromeria cristata subsp. phrygia and the enantiomeric distribution of borneol. J. Agric. Food Chem., 2001, 49, 4300–4303.
http://dx.doi.org/10.1021/jf0105034

34. Vardar-Unlü, G., Candan, F., Sökmen, A., Daferera, D., Polissiou, M., Sökmen, M., Dönmez, E., and Tepe, B. Antibacterial and antioxidant activity of the essential oil and methanol extracts of Thymus pectinanus Fisch. et Mey var. pectinatus (Lamiaceace). J. Agric. Food Chem., 2003, 51, 63–67.
http://dx.doi.org/10.1021/jf025753e

35. Chavan, M. J., Wakte, P. S., and Shinde, D. B. Analgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. Bark. Phytomedicine, 2010, 17, 149–151.
http://dx.doi.org/10.1016/j.phymed.2009.05.016

36. Ghelardini, C., Galeotti, N., Di Cesare Mannelli, L., Maz­zanti, G., and Bartolini, A. Local anaesthetic activity of beta-caryophyllene. Il Farmaco, 2001, 56, 387–389.
http://dx.doi.org/10.1016/S0014-827X(01)01092-8

37. Yang, D., Michel, L., Chaumont, J. P., and Millet, C. J. Use of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosis. Myco­pathologia, 1999, 148, 79–82.
http://dx.doi.org/10.1023/A:1007178924408

38. Al-Bayati, F. A. Synergistic antibacterial activity between Thymus vulgaris and Pimpinella anisum essential oils and methanol extracts. J. Ethnopharmacol., 2008, 116, 403–406.
http://dx.doi.org/10.1016/j.jep.2007.12.003

39. Soumya, E. A. and Abdellah, H. In vitro activity of four common essential oil components against biolim-pro­ducing Pseudomonas aeruginosa. Res. J. Micro­biol., 2011, 6, 394–401.
http://dx.doi.org/10.3923/jm.2011.394.401

40. Husnu Can Baser, K. and Buchbauer, G. Handbook of Essential Oils: Science, Technology and Application. CRC Press Inc., 2010.

41. Bienkiewicz, K. J. Physical Chemistry of Leather Making. Robert E. Krieger Publishing Company, Malabar, Florida, 1993.

42. Van Deren, J. M. and Weiss, E. F. Controlling fungal growth on leather: correlation of TCMTB uptake and duration of mould resistance. J. Am. Leather Chem. Assoc., 1978, 73, 498–507.

43. Orlita, A. Microbial biodeterioration of leather and its control: a review. Int. Biodeter. Biodegrad., 2004, 53, 157–163.
http://dx.doi.org/10.1016/S0964-8305(03)00089-1

44. Orlita, A. Microbial aspects of footwear with antimicrobial treatments. In Materials of International Symposium: New Materials for Finishing and Conservation of Footwear. Centralue Laboratorium Przemyslu Obuwniczego, Krakow, Poland, 1998, 46–49.

Back to Issue