ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Characterization of cryogenically slightly crosslinked biomedical poly(vinyl alcohol) gels; pp. 228–236
PDF | doi: 10.3176/proc.2012.3.13

Authors
Jolanta Stasko, Līga Berzina-Cimdina, Martins Kalnins
Abstract

Poly(vinyl alcohol) gels, prepared by the freezing/thawing technique, were studied. Poly(vinyl alcohol) water solutions were exposed to 1–3 subsequent cycles of freezing (12 h at – 20 °C) followed by thawing (12 h at 20 °C). Water content (weight and volume fraction) and degree of swelling a at the equilibrium state were determined. Average molecular weights of polymer chains between crosslinks MC (using the Flory–Rehner approach) were calculated. Values of a and MC considerably decrease with the growth of the number of freezing/thawing cycles nC.
     The modulus of elasticity E, tensile strength sB, and elongation at brake eB were determined from experimental stress–strain relationships of swollen gels. The E and sB and values considerably increase with nC: up to 6–8 times for E and almost by an order for tensile strength sB. More concentrated water solutions provide almost two times greater E and sB values. Strength-deformation characteristics for gels prepared at nC = 2–3 are acceptable for their application in potential drug delivery systems.
     To assess the stability of crosslinked structures, gels were subjected to subsequent drying (at 25, 60, and 105 °C) and water sorption (at 25 °C) cycles. Reduction of the swelling degree and respective calculated MC values as well as lessening of the initial rate of water sorption after each drying cycle indicate the formation of additional crosslinks.

References

  1. Peppas, N. A., Hilt, J. Z., Khademhosseini, A., and Langer, R. Hydrogels in biology and medicine: from molecular principles to biotechnology. Adv. Mater., 2006, 18, 1345–1360.
http://dx.doi.org/10.1002/adma.200501612

  2. Hoare, T. R. and Kohane, D. S. Hydrogels in drug delivery: progress and challenges. Polymer, 2008, 49, 1993–2007.
http://dx.doi.org/10.1016/j.polymer.2008.01.027

  3. Peppas, N. A. and Mongia, N. K. Ultrapure poly(vinyl alcohol) hydrogels with mucoadhesive drug delivery. Eur. J. Pharm. Biopharm., 1997, 43, 51–58.
http://dx.doi.org/10.1016/S0939-6411(96)00010-0

  4. Fray, M., Pilaszkiewicz, A., Swieszkowski, W., and Kurzyd­lowski, K. J. Morphology assessment of chemically modified and cryostructured poly(vinyl alcohol) hydrogel. Eur. Polym. J., 2007, 43, 2035–2040.
http://dx.doi.org/10.1016/j.eurpolymj.2007.02.024

  5. Hickey, A. S. and Peppas, N. A. Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. J. Membr. Sci., 1995, 107, 229–237.
http://dx.doi.org/10.1016/0376-7388(95)00119-0

  6. Ostuka, E, Sugiyama, M., and Suzuki, A. Formation and destruction of physical crosslinks by mild treatments in chemically crosslinked poly(vinyl alcohol) gels. Polym. Bull., 2011, 67, 1215–1226.
http://dx.doi.org/10.1007/s00289-011-0450-y

  7. Hassan, C. M., Ward, J. H., and Peppas, N. A. Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer, 2000, 41, 6729–6739.
http://dx.doi.org/10.1016/S0032-3861(00)00031-8

  8. Kuryanagi, Y. Advances in wound dressings and cultured skin substitutes. J. Artif. Organs., 1999, 2, 97–116.
http://dx.doi.org/10.1007/BF02480051

  9. Stasko, J., Kalniņš, M., Dzene, A., and Tupureina, V. Poly(vinyl alcohol) hydrogels. Proc. Estonian Acad. Sci., 2009, 58, 63–66.
http://dx.doi.org/10.3176/proc.2009.1.11

10. Stasko, J., Kalnins, M., Dzene, A., and Tupureina, V. Development of poly(vinyl alcohol) based systems for wound dressings. IFMBE Proceedings, 2008, 20, 80–82.
http://dx.doi.org/10.1007/978-3-540-69367-3_22

11. Lozinsky, V. I. Cryotropic gelation of poly(vinyl alcohol) solutions. Russ. Chem. Rev., 1998, 67, 573–586.
http://dx.doi.org/10.1070/RC1998v067n07ABEH000399

12. Willcox, P. J., Howie, W. D., Schmidt-Rohr, K., Hoag­land, D. A., Gido, S. P., Pudjijanto, S., Kleiner, L. W., and Ventkatraman, S. Microstructure of poly(vinyl alcohol) hydrogels produced by freeze/thaw cycling. J. Polym. Sci., 1999, 37, 3438–3454.

13. Marzocca, A. J., Rodriguez Garraza, A. L., and Man­silla, M. A. Evaluation of the polymer-solvent interac­tion parameter χ for the systems cured polybutadiene rubber and toluene. Polym. Test., 2010, 29, 119–126.
http://dx.doi.org/10.1016/j.polymertesting.2009.09.013

14. Ruiz, J., Mantecόn, A., and Cádiz, V. Network charac­terization and swelling behavior of chemical hydrogels based on acid-containing poly(vinyl alcohol). J. Appl. Polym. Sci., 2003, 88, 3026–3031.
http://dx.doi.org/10.1002/app.12136

15. Martens, P. and Anseth, K. S. Characterization of hydro­gels formed from acrylate modified poly(vinyl alcohol) macromers. Polymer, 2000, 41, 7715–7722.
http://dx.doi.org/10.1016/S0032-3861(00)00123-3

16. Bokobza, L. Elastomeric composites. I. Silicone com­posites. J. Appl. Polym. Sci., 2004, 93, 2095–2104.
http://dx.doi.org/10.1002/app.20684

17. Treloar, L. R. G. 2005. Physics of Rubber Elasticity. 3rd edn. Oxford University Press, Great Britain.

18. Ferry, J. D. 1980. Viscoelastic Properties of Polymers. John Wiley & Sons, New York.

19. Oudshoorn, M. H. M., Rissmann, R., Bouwstra, J. A., and Hennink, W. E. Synthesis and characterization of hyperbranched polyglycerol hydrogels. Biomaterials, 2006, 27, 5471–5479.
http://dx.doi.org/10.1016/j.biomaterials.2006.06.030

20. Kang, B. U., Jho, J. Y., Kim, J., Lee, S.-S., Park, M., Lim, S., and Choe, C. R. Effect of molecular weight between crosslinks on the fracture behavior of rubber-toughened epoxy adhesives. J. Appl. Polym. Sci., 2001, 79, 38–48.
http://dx.doi.org/10.1002/1097-4628(20010103)79:1<38::AID-APP50>3.0.CO;2-O

21. Lee, J., Macosko, C. W., and Urry, D. W. Phase transition and elasticity of protein-based hydrogels. J. Biomater. Sci. Polymer Edn., 2001, 12, 229–242.
http://dx.doi.org/10.1163/156856201750180942

22. Paradossi, G., Finelli, I., Cerroni, B., and Chiessi, E. Adding chemical cross-links to a physical hydrogel. Molecules, 2009, 14, 3662–3675.
http://dx.doi.org/10.3390/molecules14093662

23. Plieva, F. M., Karlsson, M., Aguilar, M. R., Gomez, D., Mikhalovsky, S., Galaev, I. Y., and Mattiasson, B. Pore structure of macroporous monolithic cryogels prepared from poly(vinyl alcohol). J. Appl. Polym. Sci., 2006, 100, 1057–1066.
http://dx.doi.org/10.1002/app.23200

24. Valentin, J. L., Lopez, D., Hernandez, R., Mijangos, C., and Saalwähter, K. Structure of poly(vinyl alcohol) cryo-hydrogels as studied by proton low-field NMR spectroscopy. Macromolecules, 2009, 42, 263–272.
http://dx.doi.org/10.1021/ma802172g

Back to Issue