ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Analytical model of laminar composites having fibre reinforced polyester faces and a polypropylene honeycomb core; experimental testing of the model; pp. 245–251
PDF | doi: 10.3176/proc.2012.3.15

Authors
Daiva Zeleniakiene, Vitalis Leisis, Paulius Griskevicius
Abstract

Experimental study of deformation behaviour of sandwich structures with a honeycomb core in the cases of quasi-static loading was carried out. The object of investigation was the static bending of the sandwich composite used for safety important structures made of woven glass fibre and polyvinylester resin composite facesheets with a polypropylene hexagonal honeycomb core. The results were obtained using equations of laminate theory; modified equations of beam theory were compared to experimental ones. As the analytically obtained results were in good agreement with the experimentally obtained ones, this methodology was used for the strength analysis of the investigated structure. The influence of geometrical parameters on the static behaviour of the sandwich structure was evaluated and their dependence on strength properties of the layered structure was assessed.

References

  1. Allen, H. G. Analysis and Design of Structural Sandwich Panels. Pergamon Press, Oxford, 1969.

  2. Zenkert, D. The Handbook of Sandwich Construction. Chameleon Press Ltd., London, 1997.

  3. Steeves, C. A. and Fleck, N. A. Material selection in sandwich beam construction. Scr. Mater., 2004, 50, 1335–1339.
http://dx.doi.org/10.1016/j.scriptamat.2004.02.015

  4. Shahdin, A., Mezeix, L., Bouvet, Ch., Morlier, J., and Gourinat, Y. Fabrication and mechanical testing of glass fiber entangled sandwich beams: a comparison with honeycomb and foam sandwich beams. Compos. Struct., 2009, 90, 404–412.
http://dx.doi.org/10.1016/j.compstruct.2009.04.003

  5. Lingaiah, K. and Suryanarayana, B. G. Strength and stiffness of sandwich beams in bending. Exp. Mech., 1989, 31, 1–9.
http://dx.doi.org/10.1007/BF02325715

  6. Gibson, L. J. and Ashby, M. F. Cellular Solids: Structures & Properties. Pergamon Press, Oxford, 1988.

  7. Kress, G. and Winkler, M. Honeycomb sandwich residual stress deformation pattern. Compos. Struct., 2009, 89, 294–302.
http://dx.doi.org/10.1016/j.compstruct.2008.08.009

  8. Chen, D. H. and Ozaki, S. Analysis of in-plane elastic modulus for a hexagonal honeycomb core: effect of core height and proposed analytical method. Compos. Struct., 2009, 88, 17–25.
http://dx.doi.org/10.1016/j.compstruct.2008.02.021

  9. Chen, D. H. and Ozaki, S. Stress concentration due to defects in a honeycomb structure. Compos. Struct., 2009, 89, 52–59.
http://dx.doi.org/10.1016/j.compstruct.2008.06.010

10. Belouettar, S., Abbadi, A., Azari, Z., Belouettar, R., and Freres, P. Experimental investigation of static and fatigue behaviour of composites honeycomb materials using four point bending tests. Compos. Struct., 2009, 87, 265–273.
http://dx.doi.org/10.1016/j.compstruct.2008.01.015

11. Triplett, M. H. and Schonberg, W. P. Static and dynamic finite element analysis of honeycomb sandwich structures. Struct. Eng. & Mech., 1998, 6, 95–113.

12. Meraghni, F., Desrumaux, F., and Benzeggagh, M. L. Mechanical behaviour of cellular core for structural sandwich panels. Compos.: Part A, 1999, 30, 767–779.
http://dx.doi.org/10.1016/S1359-835X(98)00182-1

13. Foo, C. C., Seah, L. K., and Chai, G. B. Low-velocity impact failure of aluminium honeycomb sandwich panels. Compos. Struct., 2008, 85, 20–28.
http://dx.doi.org/10.1016/j.compstruct.2007.10.016

14. Yang, Q. S., Peng, X. R., and Kwan, A. K. H. Strain energy release rate for interfacial cracks in hybrid beams. Mech. Res. Communicat., 2006, 33, 796–803.
http://dx.doi.org/10.1016/j.mechrescom.2005.09.007

15. Kharoubi, M., Fatmi, L., Berbaoui, R., Bemedakhene, S., and El Mahi, A. Study of the damage by acoustic emission of two laminate composites subjected to various levels of loading in three points bending. Mechanika, 2007, 67, 48–52.

16. Menail, Y., El Mahi, A., Assarar, M., Redjel, B., and Kond­ratas, A. The effects of water aging on the mechanical properties of glassfiber and kevlarfiber epoxy composite materials. Mechanika, 2009, 76, 28–32.

17. Griskevicius, P., Zeleniakiene, D., Leisis, V., and Ostrowski, M. Experimental and numerical study of impact energy absorption of safety important honeycomb core sandwich structures. Mater. Sci. (Medziagotyra), 2010, 16, 119–123.

18. Zeleniakiene, D., Griskevicius, P., Leisis, V., and Milasiene, D. Numerical investigation of impact behaviour of sandwich fiber reinforced plastic composites. Mechanika, 2010, 65, 31–36.

19. LST EN ISO 178:2004 Plastics – Determination of Flexural Properties (ISO 178:2001), 2004.

20. LST EN ISO 527-1:2001 Plastics – Determination of Tensile Properties – Part 1: General Principles (ISO 527-1:1993 Including Corr 1:1994), 2001.

21. LST EN ISO 844:2009 Rigid Cellular Plastics. Determina­tion of Compression Properties (ISO 844:2007), 2009.

22. Kaw, A. K. Mechanics of Composite Materials. CRC Press, Taylor & Francis Group, 2006.

Back to Issue