ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Integrated carbon nanotube fibre–quartz tuning fork biosensor; pp. 48–51
PDF | doi: 10.3176/proc.2012.1.06

Authors
Sergei Vlassov, Ott Scheler, Margo Plaado, Rünno Lõhmus, Ants Kurg, Kristjan Saal, Ilmar Kink
Abstract

We report on a novel label-free biosensor for in situ measurements in liquid. It is comprised of a porous carbon nanotube (CNT) fibre attached to one prong of a quartz tuning fork (QTF) resonator. Only the protruding CNT fibre is immersed into a liquid, while the QTF is kept above the liquid to avoid short circuit of its electrodes. The low density and large surface area of the CNT fibre assure sufficient sensitivity without affecting the performance of the QTF significantly. Efficiency of the sensor was demonstrated experimentally by comparison of the adsorption rate of bovine serum albumin to the CNT fibre at two different pH values; differences in adsorption rates were clearly distinguishable.

References

  1. Zhang, J. and O’Shea, S. Tuning forks as micromechanical mass sensitive sensors for bio- or liquid detection. Sens. Actuators B, 2003, 94, 65–72.
http://dx.doi.org/10.1016/S0925-4005(03)00320-4

  2. Sauerbrey, G. Verwendung von Schwingquarzen zur Wägung dünner Schichten und zur Mikrowägung. Z. Phys., 1959, 155, 206–222.
http://dx.doi.org/10.1007/BF01337937

  3. Matsiev, L., Bennett, J., and McFarland, E. W. Application of low frequency mechanical resonators to liquid property measurements. IEEE ULTSYM, 1998, 1, 459–462.

  4. Su, X., Dai, C., Zhang, J., and O’Shea, S. J. Quartz tuning fork biosensor. Biosens. Bioelectron., 2002, 17, 111–117.
http://dx.doi.org/10.1016/S0956-5663(01)00249-4

  5. Betzig, E. and Trautman, J. K. Near-field optics – micro­scopy, spectroscopy, and surface modification beyond the diffraction limit. Science, 1992, 257, 189–195.
http://dx.doi.org/10.1126/science.257.5067.189

  6. Rensen, W. H. J., van Hulst, N. F., and Kammer, S. B. Imag­ing soft samples in liquid with tuning fork based shear force microscopy. Appl. Phys. Lett., 2000, 77, 1557–1559.
http://dx.doi.org/10.1063/1.1308058

  7. Lee, L. F., Schaller, R. D., Haber, L. H., and Saykally, R. J. High spatial resolution imaging with near-field scanning optical microscopy in liquids. Anal. Chem., 2001, 73, 5015–5019.
http://dx.doi.org/10.1021/ac010803k

  8. Kim, S., Yoo, H., Lee, K., Friedman, B., Gaspar, M., and Levicky, R. Distance control for a near-field scanning microwave microscope in liquid using a quartz tuning fork. Appl. Phys. Lett., 2005, 86, 153506.
http://dx.doi.org/10.1063/1.1904713

  9. Zhang, H., Tang, J., Zhu, P., Ma, J., and Qin, L.-C. High tensile modulus of carbon nanotube nano-fibers produced by dielectrophoresis. Chem. Phys. Lett., 2009, 478, 230–233.
http://dx.doi.org/10.1016/j.cplett.2009.07.091

10. Golberg, D., Bando, Y., Han, W., Kurashima, K., and Sato, T. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction. Chem. Phys. Lett., 1999, 308, 337.
http://dx.doi.org/10.1016/S0009-2614(99)00591-6

11. Valenti, L. E., Fiorito, P. A., Garcia, C. D., and Giaco­melli, C. E. The adsorption–desorption process of bovine serum albumin on carbon nanotubes. J. Colloid Interface Sci., 2007, 307, 349–356.
http://dx.doi.org/10.1016/j.jcis.2006.11.046

12. Tang, J., Gao, B., Geng, H., Velev, O. D., Qin, L., and Zhou, O. Assembly of ID nanostructures into sub-micrometer diameter fibrils with controlled and variable length by dielectrophoresis. Adv. Mater., 2003, 15, 1352–1354.
http://dx.doi.org/10.1002/adma.200305086

Back to Issue