ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
EDITORIAL. Special issue devoted to the International Conference on Complexity of Nonlinear Waves. Highlights in the research into complexity of nonlinear waves; pp. 61–65
PDF | doi: 10.3176/proc.2010.2.01

Authors
Jüri Engelbrecht, Arkadi Berezovski, Tarmo Soomere
Abstract
We reflect highlights of studies into a variety of phenomena reflecting the complexity of underlying nonlinear pro­cesses in a selection of research disciplines in the Centre of Nonlinear Studies (CENS), presented in the International Conference on Complexity of Nonlinear Waves, 5–7 October 2009, Tallinn, Estonia. We emphasize the similarity of mathematical description of and potential synergy arising from complementary studies in general soliton science, wave propagation in microstructured and functionally graded materials, related inverse problems, issues of nondestructive testing, weak resonant interactions of water waves, wave transformation and run-up, soliton interactions in shallow water, and selected problems of passive scalar turbulence.
References

Berezovski, A., Engelbrecht, J., and Maugin, G. A. 2003. Numerical simulation of two-dimensional wave pro­pagation in functionally graded materials. Eur. J. Mech. A Solids, 22, 257–265.
doi:10.1016/S0997-7538(03)00029-9

Berezovski, A., Berezovski, M., and Engelbrecht, J. 2006. Numerical simulation of nonlinear elastic wave pro­pagation in piecewise homogeneous media. Mater. Sci. Eng., A418, 364–369.
doi:10.1016/j.msea.2005.12.005

Berezovski, A., Engelbrecht, J., and Maugin, G. A. 2008. Numerical Simulation of Waves and Fronts in Inhomo­geneous Solids. World Scientific, Singapore.
doi:10.1142/9789812832689

Berezovski, A., Engelbrecht, J., and Maugin, G. A. 2009. Internal variables and generalized continuum theories. In IUTAM Symposium on Scaling in Solid Mechanics (Borodich, F. M., ed.). Springer, Heidelberg, 69–80.

Braunbrück, A. and Ravasoo, A. 2005. Application of counter­propagating nonlinear waves to material characteriza­tion. Acta Mechanica, 174, 51–61.
doi:10.1007/s00707-004-0163-5

Didenkulova, I. 2009. New trends in the analytical theory of long sea wave run-up. In Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods (Quak, E. and Soomere, T., eds). Springer, 265–296.

Didenkulova, I. I., Zahibo, N., Kurkin, A. A., Levin, B. V., Pelinovsky, E. N., and Soomere, T. 2006. Run-up of nonlinearly deformed waves on a coast. Dokl. Earth Sci., 411, 8, 1241–1243.
doi:10.1134/S1028334X06080186

Didenkulova, I., Pelinovsky, E. N., and Soomere, T. 2009. Long surface wave dynamics along a convex bottom. J. Geophys. Res. – Oceans, 114, C07006.
doi:10.1029/2008JC005027

Engelbrecht, J. 2010. Nonlinear wave motion and complexity. Proc. Estonian Acad. Sci., 59, 66–71.

Engelbrecht, J. and Salupere, A. 2005. On the problem of periodicity and hidden solitons for the KdV model. Chaos, 15, 015114.
doi:10.1063/1.1858781

Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. 2005. Waves in microstructured materials and dis­persion. Phil. Mag., 85, 4127–4141.
doi:10.1080/14786430500362769

Érdi, P. 2008. Complexity Explained. Springer, Berlin.

Hasselmann, K. 1962. On the nonlinear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech., 12, 481–500.
doi:10.1017/S0022112062000373

Janno, J. and Engelbrecht, J. 2005. An inverse solitary wave problem related to microstructured materials. Inverse Problems, 21, 2019–2034.
doi:10.1088/0266-5611/21/6/014

Janno, J. and Engelbrecht, J. 2008. Inverse problems related to a coupled system of microstructure. Inverse Problems, 24, 045017.
doi:10.1088/0266-5611/24/4/045017

Kalda, J. 2000. Simple model of intermittent passive scalar turbulence. Phys. Rev. Lett., 84, 471–474.
doi:10.1103/PhysRevLett.84.471

Kalda, J. 2007. Sticky particles in compressible flows: aggrega­tion and Richardson’s law. Phys. Rev. Lett., 98, 064501.
doi:10.1103/PhysRevLett.98.064501

Kalda, J. and Morozenko, A. 2008. Turbulent mixing: the roots of intermittency. New J. Phys., 10, 093003.
doi:10.1088/1367-2630/10/9/093003

Kharif, Ch., Pelinovsky, E., and Slunyaev, A. 2009. Rogue Waves in the Ocean. Springer.

Mainzer, K. 1997. Thinking in Complexity. Springer, Berlin.

Maugin, G. A. 1993. Material Inhomogeneities in Elasticity. Chapman and Hall, London.

Nicolis, G. and Nicolis, C. 2007. Foundations of Complex Systems. World Scientific, New Jersey.

Onorato, M., Osborne, A. R., Janssen, P. A. E. M., and Resio, D. 2009. Four-wave resonant interactions in the classical quadratic Boussinesq equations. J. Fluid Mech., 618, 263–277.
doi:10.1017/S0022112008004229

Peterson, P. and van Groesen, E. 2000. A direct and inverse problem for wave crests modelled by interactions of two solitons. Physica D, 141, 316–332.
doi:10.1016/S0167-2789(00)00037-3

Peterson, P., Soomere, T., Engelbrecht, J., and van Groesen, E. 2003. Interaction soliton as a possible model for extreme waves in shallow water. Nonlinear Process. Geophys., 10, 503–510.
doi:10.5194/npg-10-503-2003

Prigogine, I. and Stengers, I. 1984. Order out of Chaos. Heinemann, London.

Quak, E. and Soomere, T. (eds). 2009. Applied Wave Mathematics: Selected Topics in Solids, Fluids, and Mathematical Methods. Springer.

Ravasoo, A. 2007. Non-linear interaction of waves in pre­stressed material. Int. J. Non-Linear Mech., 42, 1162–1169.
doi:10.1016/j.ijnonlinmec.2007.09.004

Saks, V. (ed.). 2007. Molecular System Biology: Energy for Life. Wiley-VCH, Wertheim.

Salupere, A., Engelbrecht, J., and Peterson, P. 2003. On the long-time behaviour of soliton ensembles. Math. Comp. Simul., 62, 137–147.
doi:10.1016/S0378-4754(02)00178-7

Salupere, A., Tamm, K., and Engelbrecht, J. 2008. Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech., 43, 201–208.
doi:10.1016/j.ijnonlinmec.2007.12.011

Scott, A. 1999. Nonlinear Science, Emergence and Dynamics of Coherent Structures. Oxford University Press.

Solli, D. R., Ropers, C., Koonath, P., and Jalali, B. 2007. Optical rogue waves. Nature, 450(7172), 1054–1057.
doi:10.1038/nature06402

Soomere, T. 1993. Double resonance and kinetic equation for Rossby waves. Ann. Geophys., 11, 90–98.

Soomere, T. 2001. New insight into classical equilibrium solutions of kinetic equations. J. Nonlinear Sci., 11, 305–320.
doi:10.1007/s00332-001-0402-z

Soomere, T. 2004. Interaction of Kadomtsev–Petviashvili solitons with unequal amplitudes. Phys. Lett. A, 332, 74–81.
doi:10.1016/j.physleta.2004.09.030

Soomere, T. 2007. Nonlinear components of ship wake waves. Appl. Mech. Rev., 60, 120–138.
doi:10.1115/1.2730847

Soomere, T. 2009. Solitons interactions. In Encyclopedia of Complexity and Systems Science (Meyers, R. A., ed.), vol. 9, Springer, 8479–8504.

Soomere, T. and Engelbrecht, J. 2005. Extreme elevations and slopes of interacting solitons in shallow water. Wave Motion, 41, 179–192.
doi:10.1016/j.wavemoti.2004.06.006

Soomere, T. and Engelbrecht, J. 2006. Weakly two-dimensional interaction of solitons in shallow water. Eur. J. Mech. B Fluids, 25, 636–648.
doi:10.1016/j.euromechflu.2006.02.008

Strogatz, S. H. 1994. Nonlinear Dynamics and Chaos. Addison-Wesley, Reading, Mass.

Vendelin, M., Lemba, M., and Saks, V. 2004. Analysis of functional coupling: mitochondrial creatine kinase and adenine nucleotide translocase. Biophys. J., 87, 696–713.
doi:10.1529/biophysj.103.036210

Vendelin, M., Saks, V., and Engelbrecht, J. 2007. Principles of mathematical modelling and in silico studies of integrated cellular energetics. In Molecular System Biology: Energy for Life. Wiley-VCH, Wertheim, 407–433.

West, B. J. 1985. An Essay on the Importance of Being Non­linear. Springer, Berlin.
Back to Issue