ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
The effect of solvent composition on complex formation of S100B protein with peptides; pp. 67–72
PDF | doi: 10.3176/proc.2009.1.12

Authors
Heiki Vija, Tõnu Kesvatera
Abstract
Complex formation of a vertebrate calcium sensor protein S100B with peptides  TRTKIDWNKILS (A) and SHLKSKKGQSTSRHKKLMWKTE (B) was studied. In contrast with previous reports, the affinity of these peptides for S100B was found to be similar. Added DTT, CaCl2, NaCl, and change in pH differentially reduce the affinity of the two peptides up to two orders of magnitude in the studied range. The effect of added salt is more pronounced for binding peptide B with a higher positive net charge. We conclude that it is necessary to have carefully controlled media conditions in affinity measurements of S100B protein with its targets. This is important in search for efficient S100B blockers of medical interest.
References

André, I. and Linse, S. 2002. Measurement of Ca2+-binding constants of proteins and presentation of the CaLigator software. Anal. Biochem., 305, 195–205.
doi:10.1006/abio.2002.5661

André, I., Kesvatera, T., Jönsson, B., Åkerfeldt, K., and Linse, S. 2004. The role of electrostatic interactions in calmodulin-peptide complex formation. Biophys. J., 87, 1929–1938.
doi:10.1529/biophysj.104.040998

André, I., Kesvatera, T., Jönsson, B., and Linse, S. 2006. Salt enhances calmodulin-target interaction. Biophys. J., 90, 2903–2910.
doi:10.1529/biophysj.105.068718

Barber, K. R., McClintock, K. A., Jamieson Jr., G. A., Dimlich, R. V. W, and Shaw, G. S. 1999. Specificity and Zn2+ enhancement of the S100B binding epitope TRTK-12. J. Biol. Chem., 274, 15021508.
doi:10.1074/jbc.274.3.1502

Businaro, R., Leone, S., Fabrizi, C., Sorci, G., Donato, R., Lauro, G. M., and Fumagalli, L. 2006. S100B protects LAN-5 neuroblastoma cells against Abeta amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Abeta amyloid neurotoxicity at high doses. J. Neurosci. Res., 83, 897906.
doi:10.1002/jnr.20785

Donato, R. 2003. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech., 60, 540551.
doi:10.1002/jemt.10296

Harpio, R. and Einarsson, R. 2004. S100 proteins as cancer biomarkers with focus on S100B in malignant melanoma. Clin. Biochem., 37, 512518.
doi:10.1016/j.clinbiochem.2004.05.012

Ikura, M. and Ames, J. B. 2006. Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily. Two ways to promote multifunctionality. Proc. Natl. Acad. Sci. USA, 103, 1159–1164.
doi:10.1073/pnas.0508640103

Ivanenkov, V. V., Jamieson Jr., G. A., Gruenstein, E., and Dimlich, R. V. W. 1995. Characterization of S-100b binding epitopes. J. Biol. Chem., 270, 14651–14658.
doi:10.1074/jbc.270.24.14651

Kesvatera, T., Jönsson, B., Telling, A., Tõugu, V., Vija, H., Thulin, E., and Linse, S. 2001. Calbindin D9k: a protein optimized for calcium binding at neutral pH. Biochemistry, 40, 15334–15340.
doi:10.1021/bi0114022

Lin, J., Yang, Q., Yan, Z., Markowitz, J., Wilder, P. T., Carrier, F., and Weber, D. J. 2004. Inhibiting S100B restores p53 levels in primary malignant melanoma cancer cells. J. Biol. Chem., 279, 34071–34077.
doi:10.1074/jbc.M405419200

Martin, S. R. and Bayley, P. M. 2002. Regulatory implications of a novel mode of interaction of calmodulin with a double IQ-motif target sequence from murine dilute myosin V. Protein Sci., 11, 2909–2923.
doi:10.1110/ps.0210402

McClintock, K. A., Van Eldik, L. J., and Shaw, G. S. 2002. The C-terminus and linker region of S100B exert dual control on protein–protein interactions with TRTK-12. Biochemistry, 41, 5421–5428.
doi:10.1021/bi011732m

McClintock, K. A. and Shaw, G. S. 2003. A novel S100 target conformation is revealed by the solution structure of the Ca2+-S100B-TRTK-12 complex. J. Biol. Chem., 278, 6251–6257.
doi:10.1074/jbc.M210622200

Moore, B. W. 1965. A soluble protein characteristic of the nervous system. Biochem. Biophys. Res. Commun., 19, 739–744.
doi:10.1016/0006-291X(65)90320-7

Pace, C. N., Vajdos, F., Fee, L., Grimsley, G., and Gray, T. 1995. How to measure and predict the molar absorption coefficient of a protein. Protein Sci., 4, 2411–2423.
doi:10.1002/pro.5560041120

Rothermundt, M., Peters, M., Prehn, J. H. M., and Arolt, V. 2003. S100B in brain damage and neurodegeneration. Micros. Res. Tech., 60, 614632.
doi:10.1002/jemt.10303

Rustandi, R. R., Drohat, A. C., Baldisseri, D. M., Wilder, P. T., and Weber, D. J. 1998. The Ca2+-dependent interaction of S100B(bb) with a peptide derived from p53. Biochemistry, 37, 1951–1960.
doi:10.1021/bi972701n

Rustandi, R. R., Baldisseri, D. M., and Weber, D. J. 2000. Structure of the negative regulatory domain of p53 bound to S100B(ββ). Nat. Struct. Biol., 7, 570–574.
doi:10.1038/76797

Scotto, C., Deloulme, J. C., Rousseau, D., Chambaz, E., and Baudier, J. 1998. Calcium and S100B regulation of p53-dependent cell growth arrest and apoptosis. Mol. Cell. Biol., 18, 4272–4281.

Van Eldik, L. J. and Wainwright, M. S. 2003. The Janus face of glial-derived S100B: beneficial and detrimental functions in the brain. Restorative Neurol. Neurosci., 21, 97–108.

Wilder, P. T., Baldisseri, D. M., Udan, R., Vallely, K. M., and Weber, D. J. 2003. Location of the Zn2+-binding site on S100B as determined by NMR spectroscopy and site-directed mutagenesis. Biochemistry, 42, 13410–13421.
doi:10.1021/bi035334q

Back to Issue