eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Polyphenolic compounds in apple (Malus domestica Borkh.) cultivars grown in Estonia; pp. 154–166

Karmen Kapp, Kaisa Kalder, Ave Kikas, Toivo Univer, Tõnu Püssa, Ain Raal

Several studies have shown that apples (Malus domestica Borkh.) in the daily diet are healthy due to their rich content of phytochemicals. The aim of this study was to compare the content of polyphenols in the peels, flesh, seeds and leaves of five apple cultivars (‘Antonovka’, ‘Åkerö’, ‘Cortland’, ‘Karksi renett’ and ‘Krista’) grown in Estonia. Of the 21 collected cultivars, these five were selected on the basis of their rich or distinct chemical composition according to the LC-DAD-MS/MS data. In addition, the weight of the fruit, the number of seeds in the fruit and the weight of the seeds were determined. A total of 33 compounds were detected in the peels, 23 in the flesh, 11 in the seeds, and 25 in the leaves. They belong to four groups: 1) flavon-3-ols (quercetin and its derivatives), 2) dihydrochalcones (phloretin and its derivatives), 3) flavan-3-ols (catechin, epicatechin and oligomers), and 4) esters formed between caffeic acid and L-quinic acid (chlorogenic acid). Based on the data presented in this article, the leaves contained the highest measured total polyphenol content (TPGA). The peels contained high amounts of all the major polyphenolic groups mentioned. The apple flesh lacked flavon-3-ols and the seeds flavon-3-ols and flavan-3-ols. In the peels, the major polyphenols were quercetin galactoside (3–342 mg/100 g), procyanidin B1 (18–179 mg/100 g), and (epi)catechin trimer (28–200 mg/100 g); in the flesh chlorogenic acid (77–298 mg/100 g); in the seeds phloridzin (466 mg/100 g in ‘Cortland’); and in the leaves chlorogenic acid (147–446 mg/100 g) and quercetin glycosides, especially quercetin rhamnoside (242–350 mg/100 g), quercetin galactoside (39–334 mg/100 g) and quercetin glucoside (91–321 mg/100 g).


Bergmann, C. B., McReynolds, C. B., Wan, D., Singh, N., Goetzman, H., Caldwell, C. C. et al. 2022. sEH-derived metabolites of linoleic acid drive pathologic inflammation while impairing key innate immune cell function in burn injury. Proc. Natl. Acad. Sci.119(13), e2120691119.

Boyer, J. and Liu, R. H. 2004. Apple phytochemicals and their health benefits. Nutr. J.3(5), 174–185.

Buccheri, M. and Di Vaio, C. 2004. Relationship among seed number, quality, and calcium content in apple fruits. J. Plant Nutr., 27(10), 1735–1746.

Chen, J., Zhang, H., Hu, X., Xu, M., Su, Y., Zhang, C. et al.  2022. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicol. Vitro84, 105447.

Drogoudi, P. D., Michailidis, Z. and Pantelidis, G. 2008. Peel and flesh antioxidant content and harvest quality char­acteristics of seven apple cultivars. Sci. Hortic., 115, 149– 153.

Duda-Chodak, A., Tarko, T. and Tuszyński, T. 2011. Antioxidant activity of apples – an impact of maturity stage and fruit part. Acta Sci. Pol. Technol. Aliment.,10(4), 443–454.

Eslon, J., Jaama, A. and Siimon, A. 1970. Eesti pomoloogia (Estonian Pomology). Valgus, Tallinn (in Estonian).

Fromm, M., Bayha, S., Carle, R. and Kammerer, D. R. 2012. Characterization and quantitation of low and high molecular weight phenolic compounds in apple seeds. J. Agric. Food Chem.60, 1232–1242.

Fruit Genetic Resources of Estonian University of Life Sciences. (accessed 2022-11-11).

Gabbs, M., Leng, S., Devassy, J. G., Monirujjaman, M. and Aukema, H. M. 2015. Advances in our understanding of oxyli­pins derived from dietary PUFAs. Adv. Nutr.6(5), 513–540.

Gao, S. S., Chen, X. Y., Zhu, R. Z., Choi, B.-M., Kim, S. J. and Kim, B.-R. 2012. Dual effects of phloretin on aflatoxin B1 metabolism: activation and detoxification of aflatoxin B1. Biofactors38, 34–43.

Garkava-Gustavsson, L., Mujaju, C., Sehic, J., Zborowska, A., Backes, G. M., Hietaranta, T. and Antonius, K. 2013. Gen­etic diversity in Swedish and Finnish heirloom apple cul­- tivars revealed with SSR markers. Sci. Hortic.162, 43–48.

Gharghani, A., Zamani, Z., Talaie, A., Oraguzie, N. C., Fatahi, R., Hajnajari, H. et al.  2009. Genetic identity and relationships of Iranian apple (Malus × domestica Borkh.) cultivars and landraces, wild Malus species and representative old apple cultivars based on simple sequence repeat (SSR) marker analysis. Genet. Resour. Crop Evol.56, 829–842.

Hampson, C. R. and Quamme, H. A. 2000. Use of preference testing to identify tolerance limits for fruit visual attributes in apple breeding. HortScience35(5), 921–924.

Herregods, M. 1999. Profitable quality: Cost and profits con­cerning marketing. A product preferred by consumer. In Post-Harvest Losses of Perishable Horticultural Products in the Mediterranean Region (Gerasopoulos, D., ed.). CIHEAM, Chania, 11–18. 

Hyson, D. A. 2011. A comprehensive review of apples and apple components and their relationship to human health. Adv. Nutr., 2(5), 408–420.

Jaagus, J. 1997. The impact of climate change on the snow cover pattern in Estonia. Clim. Change36(1–2), 65–77.

Jakobek, L., García-Villalba, R. and Tomás-Barberán, F. A. 2013. Polyphenolic characterization of old local apple varieties from Southeastern European region. J. Food Compos. Anal.31(2), 199–211.

Kask, K. 2010. Puuviljandus Eestis. Sordid ja aretajad (Horticulture in Estonia. Cultivars and Breeders). Estonian University of Life Sciences, Tartu (in Estonian).

Kask, K. and Kivistik, J. 2005. Puuviljad ja marjad Eestis (Fruits and Berries in Estonia). Kirjastus Ilo, Tallinn (in Estonian).

Kask, K., Jänes, H., Libek, A., Arus, L., Kikas, A., Kaldmäe, H. et al. 2010. New cultivars and future perspectives in professional fruit breeding in Estonia. Agron. Res.(Special Issue III), 603–614. 

Kimura, Y., Ito, H., Ohnishi, R. and Hatano, T. 2010. Inhibitory effects of polyphenols on human cytochrome P450 3A4 and 2C9 activity. Food Chem. Toxicol.48(1), 429–435.

Kondo, S., Tsuda, K., Muto, N. and Ueda, J. 2002. Antioxidative activity of apple skin or flesh extracts associated with fruit development on selected apple cultivars. Sci. Hortic., 96, 177–185.

Kviklys, D., Kviklienė, N., Bite, A., Lepsis, J., Univer, T., Univer, N. et al. 2012. Baltic fruit rootstock studies: evaluation of 12 apple rootstocks in North-East Europe. Hortic. Sci.39(1), 1–7.

Kviklys, D., Viškelis, J., Liaudanskas, M., Janulis, V., Laužikė, K., Samuolienė, G. et al. 2022. Apple fruit growth and quality depend on the position in the tree canopy. Plants11, 196.

Lata, B., Trampczynska, A. and Paczesna, J. 2009. Cultivar variation in apple peel and whole fruit phenolic composition. Sci. Hortic.121(2), 176–181.

Lee, K. W., Kim, Y. J., Kim, D.-O., Lee, H. J. and Lee, C. Y. 2003. Major phenolics in apple and their contribution to the total antioxidant capacity. J. Agric. Food Chem.51(22), 6516–6520.

Liaudanskas, M., Zymone, K., Viskelis, J., Kviklys, D., Viskelis, P. and Janulis, V. 2018. Seasonal variation of the qualitative and quantitative composition of phenolic compounds in Malus domestica leaves. Chem. Nat. Compd.54, 348–349.

Luckwill, L. C., Weaver, P. and MacMillan, J. 1969. Gibberellins and other growth hormones in apple seeds. J. Hortic. Sci.44, 413–124.

Mägi, E. 1975. Õunapuu (Apple Tree). Valgus, Tallinn (in Estonian).

Mainla, L., Moor, U., Karp, K. and Püssa, T. 2011. The effect of genotype and rootstock on polyphenol composition of selected apple cultivars in Estonia. Žemdirbystė-Agric.98(1), 63–70.

Marcotte, B. V., Verheyde, M., Pomerleau, S., Doyen, A. and Couillard, C. 2022. Health benefits of apple juice con­sumption: a review of interventional trials on humans. Nutrients14(4), 821.

Markaverich, B. M., Alejandro, M., Thompson, T., Mani, S., Reyna, A., Portillo, W. et al. 2007. Tetrahydrofurandiols (THF-diols), leukotoxindiols (LTX-diols), and endocrine disruption in rats. Environ. Health Perspect., 115(5), 702–708.

Masumoto, S., Terao, A., Yamamoto, Y., Mukai, T., Miura, T. and Shoji, T. 2016. Non-absorbable apple procyanidins prevent obesity associated with gut microbial and metabolomic changes. Sci. Rep., 6, 31208.

McGhie, T. K., Hunt, M. and Barnet, L. E. 2005. Cultivar and growing region determine the antioxidant polyphenolic concentration and composition of apples grown in New Zealand. J. Agric. Food Chem.53(8), 3065–3070.

Monfoulet, L.-E., Buffière, C., Istas, G., Dufour, C., Le Bourvellec, C., Mercier, S. et al. 2020. Effects of the apple matrix on the postprandial bioavailability of flavan-3-ols and nutrigenomic response of apple polyphenols in mini­pigs challenged with a high fat meal. Food Funct., 11(6), 5077–5090.

Napolitano, A., Cascone, A., Graziani, G., Ferracane, R., Scalfi, L., Di Vaio, C. et al. 2004. Influence of variety and storage on the polyphenol composition of apple flesh, J. Agric. Food Chem., 52(21), 6526–6531.

Nguyen, N. A., Cao, N. T., Nguyen, T. H. H., Le, T.-K., Cha, G. S., Choi, S.-K. et al.  2020. Regioselective hydroxylation of phloretin, a bioactive compound from apples, by human cytochrome P450 enzymes. Pharmaceuticals13(11), 330.

Nie, Y., Ren, D., Lu, X., Sun, Y. and Yang, X. 2015. Differential protective effects of polyphenol extracts from apple peels and fleshes against acute CCl4-induced liver damage in mice. Food Funct., 6(2), 513–524.

Ogino, Y., Osada, K., Nakamura, S, Ohta, Y., Kanda, T. and Sugano, M. 2007. Absorption of dietary cholesterol oxidation products and their downstream metabolic effects are reducted by dietary apple polyphenols. Lipids42(2), 151–161.

Petkovšek, M. M., Stampar, F. and Veberic, R. 2007. Parameters of inner quality of the apple scab resistant and susceptible apple cultivars (Malus domesticaBorkh.). Sci. Hortic., 114(1), 37–44.

Petkovšek, M. M., Stampar, F. and Veberic, R. 2008. Increased phenolic content in apple leaves infected with the apple scab pathogen. J. Plant Pathol.90(1), 49–55.

Petkovšek, M. M., Slatnar, A., Stampar, F. and Veberic, R. 2011. Phenolic compounds in apple leaves after infection with apple scab. Biol. Plant.55(4), 725–730.

Picinelli, A., Dapena, E. and Mangas, J. J. 1995. Polyphenolic pattern in apple tree leaves in relation to scab resistance. A preliminary study. J. Agric. Food Chem., 43(8), 2273–2278.

Pohl, C., Will, F., Dietrich, H. and Schrenk, D. 2006. Cytochrome P450 1A1 expression and activity in Caco-2 cells: modulation by apple juice extract and certain apple polyphenols. J. Agric. Food Chem.54(26), 10262–10268.

Renard, C. M. G. C., Dupont, N. and Guillermin, P. 2007. Concentrations and characteristics of procyanidins and other phenolics in apple during fruit growth. Phytochemistry68, 1128–1138.

Seppä, L. 2014. Domestic apple cultivars: sensory descriptions and consumer responses.  Doctoral dissertation. University of Helsinki, Helsinki.

Serra, A. T., Rocha, J., Sepodes, B., Matias, A. A., Feliciano, R. P., de Carvalho, A. et al. 2012. Evaluation of cardiovascular protective effect of different apple variates – correlation of response with composition. Food Chem., 135(4), 2378–2386.

Sun, J. and Liu, R. H. 2008. Apple phytochemical extracts inhibit proliferation of estrogen-dependent and estrogen-indepen­dent human breast cancer cells through cell cycle modu- lation. J. Agric. Food Chem.56(24), 11661–11667.

Tahir, I. I., Johansson, E. and Olsson, M. E. 2007. Improvement of quality and storability of apple cv. Aroma by adjustment of some pre-harvest conditions. Sci. Hortic., 112(2), 164–171.

Toom, M., Talgre, L., Mäe, A., Tamm, S., Narits, L., Edesi, L. et al. 2019. Selecting winter cover crop species for northern climatic conditions. Biol. Agric. Hortic.35(4), 263–274.

Treutter, D. 2001. Biosynthesis of phenolic compounds and its regulation in apple. Plant Growth Regul., 34, 71–89.

Tsao, R., Yang, R., Young, J. C. and Zhu, H. 2003. Polyphenolic profiles in eight apple cultivars using high-performance liquid chromatography (HPLC). J. Agric. Food Chem.51(21)6347–6353.

Veberic, R., Trobec, M., Herbinger, K., Hofer, M., Grill, D. and Stampar, F. 2005. Phenolic compounds in some apple (Malus domestica Borkh.) cultivars of organic and integrated production. J. Sci. Food Agric.85(10), 1687–1694.

Warrington, I. J., Fulton, T. A., Halligan, E. A. and de Silva, H. N. 1999. Apple fruit growth and maturity are affected by early season temperatures. J. Am. Soc. Hortic. Sci.124(5), 468–477.

Wojdyło, A. and Oszmiański, J. 2020. Antioxidant activity modu­lated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants9(7), 567.

Wu, J., Gao, H., Zhao, L., Liao, X., Chen, F., Wang, Z. and Hu, X. 2007. Chemical compositional characterization of some apple cultivars. Food Chem.,103(1), 88–93.

Xu, Y., Fan, M., Ran, J., Zhang, T., Sun, H., Dong, M. et al. 2016. Variation in phenolic compounds and antioxidant activity in apple seeds of seven cultivars. Saudi J. Biol. Sci.23(3), 379–388.

Back to Issue