eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Performance analysis of WSN–FSO system modeled by Gamma–Chi-square channel distribution; pp. 30–40

Jelena Todorović, Branimir Jakšić, Petar Spalević, Miloš Dobrojević, Ivan Milovanović

This paper presents the WSN–FSO (wireless sensor network–free-space optics) system based on CCR (corner cube retroreflector) and modeled with Gamma–Chi-square distribution. The expressions of ABER (average bit error rate) for the received signal under conditions of different levels of atmospheric turbulence are calculated. Numerical results are presented in the form of graphs, and the results are confirmed by the Monte Carlo simulation. Graphs are presented for different Rician factor values, link lengths, and different levels of atmospheric turbulence. The obtained results are compared with the existing results for other FSO channel distribution models. After thorough consideration we conclude that Gamma–Chi-square gives a better system performance in terms of ABER.


1. Shammaa, S. and Verma, P. Interconnection of IEEE 802.15.4 islands through free space optical communication links. In Proceedings of the 5th International Conference on Signal Processing and Communication Systems (ICSPCS), Honolulu, USA, 12–14 December, 2011. IEEE, 2012, 1–9.

2. Teramoto, S. and Ohtsuki, T. Optical wireless sensor network system using corner cube retroreflectors (CCRs). In Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM), Dallas, USA, 29 November – 3 December 2004. IEEE, 2004, 1035–1039.

3. Yan, Z., Mukherjee, A., Yang, L., Routray, S. and Palai, G. Energy-efficient node positioning in optical wireless sensor networks. Optik, 2019, 178, 461–466.

4. Althunibat, S., Altarawneh, Z. and Mesleh, R. Performance analysis of free space optical-based wireless sensor networks using corner cube retroreflectors.Trans. Emerg. Telecommun. Technol., 2019, 30(12), e3707.

5. Babic, R. Analiza signala (Signal Analysis). Akademska Misao, Belgrade, 2000 (in Serbian). 

6. Badarneh, O. S., Derbas, R., Almehmadi, F. S., El Bouanani, F. and Muhaidat, S. Performance analysis of FSO communications over F turbulence channels with pointing errors. IEEE Commun. Lett., 2021, 25(3), 926–930.

7. Ndjiongue, A. R., Ngatched, T., Dobre, O., Armada, A. G. and Haas, H. Analysis of RIS-based terrestrial-FSO link over G-G turbulence with distance and jitter ratios. J. Light. Technol., 2021, 39(21), 6746–6758.

8. Stefanovic, C., Morales-Céspedes, M. and Armada, A. G. Performance analysis of RIS-assisted FSO communications over Fisher–Snedecor F turbulence channels. Appl. Sci., 2021, 11(21), 10149.

9. Amirabadi, M. A., Kahaei, M. H. and Nezamalhosseini, S. A. Deep learning based detection technique for FSO communication systems. Phys. Commun., 2020, 43, 101229.

10. Jahid, A., Alsharif, M. H. and Hall, T. J. A contemporary survey on free space optical communication: potential, technical challenges, recent advances and research direction. J. Netw. Comput. Appl., 2022, 200, 103311.

11. Trung, H. D., Hoa, N. T., Trung, N. H. and Ohtsuki, T. A closed-form expression for performance optimization of subcarrier intensity QAM signals-based relay-added FSO systems with APD. Phys. Commun., 2018, 31, 203–211.

12. Won, J., Oh, Y., Park, J., Park, J. Y., Jo, M.-S. and Kim, D. Development and characterization of piezoelectrically actuated corner cube retroreflectors for applications in free-space optical sensor network. Appl. Opt., 2012, 51(13), 2315–2321.

13. Yang, G., You, S., Bi, M., Fan, B., Lu, Y., Zhou, X. et al. Wave-optics simulation of the double-pass beam propagation in modulating retro-reflector FSO systems using a corner cube reflector. Appl. Opt., 2017, 56(26), 7474–7483.

14. Zhang, X., Tepedelenlioğlu, C., Banavar, M. K., Spanias, A. and Muniraju, G. Location estimation and detection in wireless sensor networks in the presence of fading. Phys. Commun., 2019, 32, 62–74.

15. Huang, J. and Li, Z. Infrared-based short-distance FSO sensor network system. Int. J. Online and Biomedical Engineering (iJOE), 2018, 14(12), 43–56.

16. Kumar, L., Sharma, V. and Singh, A. Cluster-based single-sink wireless sensor networks and passive optical network converged network incorporating sideband modulation schemes. Opt. Eng., 2018, 57(2), 026102.

17. Liang, J., Xu, Z., Xu, Y., Zhou, W. and Li, C. Adaptive cooperative routing transmission for energy heterogeneous wireless sensor networks. Phys. Commun., 2021, 49, 101460.

18. Yu, H. and Zikria, Y. B. Cognitive radio networks for Internet of Things and wireless sensor networks. Sensors, 2020, 20(18), 5288.

19. Sivathasan, S. and O’Brien, D. Hybrid radio and optical communications for energy-efficient wireless sensor networks, IETE J. Res., 2011, 57(5), 396–406.

20. Ploix, M.-A., Kauffmann, P., Chaix, J.-F., Lillamand, I., Baqué, F. and Corneloup, G. Acoustical properties of an immersed corner-cube retroreflector alone and behind screen for ultrasonic telemetry applications. Ultrasonics, 2020, 106, 106149.

21. Khalid, M. W., Ahmed, R., Yetisen, A. K. and Butt, H. Flexible corner cube retroreflector array for temperature and strain sensing. RSC Adv., 2018, 14, 7588–7598.

22. Lewellen, J. W. and Harris, J. R. Performance estimates for a multicube retroreflector design. Opt. Commun., 2019, 441, 26–32.

23. Rosenkrantz, E. and Arnon, S. 1550nm modulating retroreflector based on coated nanoparticles for free-space optical communication. Appl. Opt., 2015, 54(17), 5309–5313.

24. Todorović, J., Spalević, P., Panić, S., Milosavljević, B. and Gligorijević, M. FSO system performance analysis based on novel Gamma–Chi-square irradiance PDF model. Opt. Appl., 2021, 51(3), 335–348.

25. Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series, and Products. 7th ed. Elsevier Academic Press, USA, 2007.

26. Belmonte, A. and Kahn, J. M. Performance of synchronous optical receivers using atmospheric compensation techniques. Opt. Express, 2008, 16(18), 14151–14162.

27. Kilbas, A. A. and Saigo, M. H-Transforms Theory and Applications. Chapman & Hall / CRC Press, USA, 2004.

28. Prudnikov, A. P., Brychkov, Y. A. and Marichev, O. I. Интегралы и ряды (Integrals and Series). 2nd ed. Fizmatlit, Moscow, 2003 (in Russian).

29. Chergui, H., Benjillali, M. and Alouini, M.-S. Technical Report: Rician K-Factor-Based Analysis of XLOS Service Probability in 5G Outdoor Ultra-Dense Networks. Cornell University, New York, 2018.

30. Coelho, C. A. and Arnold, B. Finite Form Representations for Meijer G and Fox H Functions: Applied to Multivariate Likelihood Ratio Tests Using Mathematica. Springer, Cham, 2019.

31. Al-Omari, S. K. Extension of generalized Fox’s H-function operator to certain set of generalized integrable functions. Adv. Differ. Equ., 2020, 2020, 448.

Back to Issue