eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Synthesis of 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one, a D-ring precursor of 9,11-secosterols; pp. 307–313

Marek Kõllo, Kristi Rõuk, Margus Lopp ORCID Icon

The asymmetric oxidation of a key intermediate for 9,11-secosterol synthesis, 2-[(4-methylphenyl)thio]-2-cyclopenten-1-one 2 with a Ti(iPrO)4/(+)-DET/TBHP complex was studied. The kinetic resolution of racemic 2-[(4-methylphenyl)sulfinyl]- 2-cyclopenten-1-one 1 by oxidation with the same Ti-complex was also carried out. In both cases enantioenriched 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one 1 was obtained in satisfactory yields and sufficient enantiomeric purity for further enantioenrichment by recrystallization. The obtained results afford simple access to the D-ring precursor of 9,11-secosterols.


1. Koljak, R., Pehk, T., Järving, I., Liiv, M., Lopp, A., Varvas, K. et al. New antiproliferative 9,11-secosterol from soft coral Gersemia fruticosaTetrahedron Lett., 1993, 34(12), 1985–1986.

2. Lopp, A., Pihlak, A., Paves, H., Samuel, K., Koljak, R. and Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids, 1994, 59(4), 274–281.

3. Koljak, R., Lopp, A., Pehk, T., Varvas, K., Müürisepp, A.-M., Järving, I. and Samel, N. New cytotoxic sterols from the soft coral Gersemia fruticosaTetrahedron, 1998, 54(1–2), 179–186.

4. Aav, R., Kanger, T., Pehk, T., Lopp, M. Synthesis of the AB-ring of 9,11-secosterols. Synlett, 2000, 4, 529–531.

5. Aav, R., Kanger, T., Pehk, T. and Lopp, M. Oxidation of substituted bicyclo[4.4.0]decen-3-ones. Proc. Estonian Acad. Sci. Chem., 2001, 50(3), 138–146.

6. Aav, R., Kanger, T., Pehk, T. and Lopp, M. Synthesis of substituted cyclopentanones from 2-oxabicyclo[3.3.0]oct-6-en-3-one. Proc. Estonian Acad. Sci. Chem., 2007, 56(1), 3–13.

7. Kõllo, M., Aav, R., Tamp, S., Jarvet, J. and Lopp, M. Asymmetric synthesis of the 2,2,3-trisubstituted cyclo­pentanone, D-ring fragment of 9,11-secosterols. Tetrahedron, 2014, 70(38), 6723–6727.

8. Kõllo, M., Kasari, M., Kasari, V., Pehk, T., Järving, I., Lopp, M. et al. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein J. Org. Chem., 2021, 17, 581–588.

9. Posner, G. H., Mallamo, J. P., Hulce, M. and Frye. L. L. Asymmetric induction during organometallic conjugate addition to enantiomerically pure 2-(arylsulfinyl)-2-cyclo­pentenones. J. Am. Chem. Soc., 1982, 104(15), 4180–4185.

10. Posner, G. H., Switzer. C. Total synthesis of natural estrone and estradiol methyl ethers in extremely high enantiomeric purity via an asymmetric Michael addition to an unsaturated sulfoxide. J. Am. Chem. Soc., 1986, 108(6), 1239–1244.

11. Posner, G. H. Asymmetric synthesis of carbon-carbon bonds using sulfinyl cycloalkenones, alkenolides, and pyrones. Acc. Chem. Res., 1987, 20, 72–78.

12. Pitchen, P., Duñach, E., Deshmukh, M. N. and Kagan. H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc., 1984, 106(26), 8188–8193.

13. Pitchen, P. and Kagan, H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. Tetrahedron Lett., 1984, 25(10), 1049–1052.

14. Brunel, J.-M., Diter, P., Duetsch, M. and Kagan. H. B. Highly enantioselective oxidation of sulfides mediated by a chiral titanium complex. J. Org. Chem., 1995, 60(24), 8086–8088.

15. Furia, F. D., Modena, G. and Seraglia, R. Synthesis of chiral sulfoxides by metal-catalyzed oxidation with t-butyl hydro­peroxide. Synthesis, 1984, 4, 325–326.

16. Jäälaid, R., Pehk, T., Kanger, T., Lopp, M. and Lille Ü. Chiral sulfoxides from thioketal of bicyclo[3.2.0]hept-2-ene-6-one. Proc. Acad. Sci. Estonian SSR. Chem., 1989, 38(2), 133–134.

17. Jäälaid, R., Lopp, M., Pehk, T. and Lille, Ü. The optically active intermediates for synthesis of prostanoids. II Separation of enantiomeric bicyclo[3.2.0]hept-2-ene-6-ones via chiral sulfoxides. Zh. Org. Khim., 1990, 26, 2355–2360. 

18. Xu, N., Zhu, J., Wu, Y.-Q., Zhang, Y., Xia, J.-Y., Zhao, Q. et al. Enzymatic preparation of the chiral (S)-sulfoxide drug esomeprazole at pilot-scale levels.Org. Process Res. Dev., 2020, 24(6), 1124–1130.

19. Zhang, Y., Wu, Y.-Q., Xu, N., Zhao, Q., Yu, H.-L. and Xu, J.-H. Engineering of cyclohexanone monooxygenase for the enantioselective synthesis of (S)-omeprazole. ACS Sustainable Chem. Eng., 2019, 7(7), 7218–7226.

20. Liu, F., Shou, C., Geng, Q., Zhao, C., Xu, J. and Yu, H. A Baeyer–Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Appl. Microbiol. Biotechnol., 2021, 105(8), 3169–3180.

21. Nosek, V. and Misek, J. Chemoenzymatic deracemization of chiral sulfoxides. Angew. Chem. Int. Ed., 2018, 57(31), 9849–9852.

22. Peng, L., Wen, Y., Chen, Y., Yuan, X., Zhou, Y., Cheng, X. et al. Biocatalytic preparation of chiral sulfoxides through asymmetric reductive resolution by methionine sulfoxide reductase A. ChemCatChem, 2018, 10(15), 3284–3290.

23. Nosek, V. and Misek, J. Enzymatic kinetic resolution of chiral sulfoxides – an enantiocomplementary approach. Chem. Commun., 2019, 55(4), 10480–10483.

24. Andersen, K. K. Synthesis of (+)-ethyl p-tolyl sulfoxide from (-)-menthyl (-)-p-toluenesulfinate. Tetrahedron Lett., 1962, 3(3), 93–95.

25. Andersen, K. K., Gaffield, W., Papanikolaou, N. E., Foley, J. W. and Perkins, R. I. Optically active sulfoxides. The synthesis and rotatory dispersion of some diaryl sulfoxides. J. Am. Chem. Soc., 1964, 86(4), 5637–5646.

26. Branca, S. and Smith, A. B. A stereospecific total synthesis of (±)-pentenomycin I, (±)-pentenomycin II, and dehydro­pentenomycin I exploiting a versatile latent α-ketovinyl anion equivalent. J. Am. Chem. Soc., 1978, 100(24), 7767–7768.

27. Hulce, M., Mallomo, J. P., Frye, L. L., Kogan, T. P. and Posner, G. H. (S)-(+)-2-(p-toluenesulfinyl)-2-cyclopentenone: precursor for enantioselective synthesis of 3-substituted cyclopentanones. Org. Synth., 1986, 64(4), 196.

28. Ge, W., Zhu, X. and Wei, Y. Iodine-catalyzed selective synthesis of 2-sulfanylphenols via oxidative aromatization of cyclohexanones and disulfides. Adv. Synth. Catal., 2013, 355(4), 3014–3021.

29. Lin, Y.-M., Lu, G.-P., Wang, G.-X., Yi, W.-B. Odorless, regioselective synthesis of diaryl sulfides and α-thioaryl carbonyls from sodium arylsulfinates via a metal-free radical strategy in water. Adv. Synth. Catal., 2016, 358, 4100–4105.

30. Zhao, S. H., Samuel, O. and Kagan, H. B. Asymmetric oxidation of sulfides mediated by chiral titanium complexes: mechanistic and synthetic aspects. Tetrahedron, 1987, 43(21), 5135–5144.

31. Kagan, H. B., Dunach, E., Nemecek, C., Pitchen, P., Samuel, O. and Zhao, S.-H. A short route to chiral sulfoxides using titanium-mediated asymmetric oxidation. Pure Appl. Chem., 1985, 57(12), 1911–1916.

32. Maddireddy, N. V., Godbole, H. M., Singh, G. P., Kini, S. G. and Shenoy, G. G. Catalytic asymmetric oxidation of sulfides to sulfoxides using (R)-6,6’-diphenyl-BINOL as a chiral ligand. J. Chem. Sci., 2019, 131(64), 1–6.

33. Komatsu, N., Hashizume, M., Sugita, T. and Uemura, S. Catalytic asymmetric oxidation of sulfides to sulfoxides with tert-butyl hydroperoxide using binaphthol as a chiral auxiliary. J. Org. Chem., 1993, 58, 4529–4533.

34. Komatsu, N., Hashizume, M., Sugita, T. and Uemura, S. Kinetic resolution of sulfoxides catalysed by chiral titanium-binaphthol complex. J. Org. Chem., 1993, 58, 7624–7626.

35. Mase, N., Watanabe, Y., Ueno, Y. and Toru, T. Highly diastereoselective intermolecular β-addition of alkyl radicals to chiral 2-(arylsulfinyl)-2-cycloalkenones. J. Org. Chem., 1997, 62, 7794–7800.

36. Ruano, J. L. G., Fajardo, C., Fraile, A. and Martín, M. R. m-CPBA/KOH: an efficient reagent for nucleophilic epoxidation of gem-deactivated olefins. J. Org. Chem., 2005, 70, 4300–4306.

Back to Issue