ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Synthesis of 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one, a D-ring precursor of 9,11-secosterols; pp. 307–313
PDF | https://doi.org/10.3176/proc.2022.4.01

Authors
Marek Kõllo, Kristi Rõuk, Margus Lopp ORCID Icon
Abstract

The asymmetric oxidation of a key intermediate for 9,11-secosterol synthesis, 2-[(4-methylphenyl)thio]-2-cyclopenten-1-one 2 with a Ti(iPrO)4/(+)-DET/TBHP complex was studied. The kinetic resolution of racemic 2-[(4-methylphenyl)sulfinyl]- 2-cyclopenten-1-one 1 by oxidation with the same Ti-complex was also carried out. In both cases enantioenriched 2-(S)-[(4-methylphenyl)sulfinyl]-2-cyclopenten-1-one 1 was obtained in satisfactory yields and sufficient enantiomeric purity for further enantioenrichment by recrystallization. The obtained results afford simple access to the D-ring precursor of 9,11-secosterols.

References

1. Koljak, R., Pehk, T., Järving, I., Liiv, M., Lopp, A., Varvas, K. et al. New antiproliferative 9,11-secosterol from soft coral Gersemia fruticosaTetrahedron Lett., 1993, 34(12), 1985–1986. 
https://doi.org/10.1016/S0040-4039(00)91981-6

2. Lopp, A., Pihlak, A., Paves, H., Samuel, K., Koljak, R. and Samel, N. The effect of 9,11-secosterol, a newly discovered compound from the soft coral Gersemia fruticosa, on the growth and cell cycle progression of various tumor cells in culture. Steroids, 1994, 59(4), 274–281. 
https://doi.org/10.1016/0039-128X(94)90113-9

3. Koljak, R., Lopp, A., Pehk, T., Varvas, K., Müürisepp, A.-M., Järving, I. and Samel, N. New cytotoxic sterols from the soft coral Gersemia fruticosaTetrahedron, 1998, 54(1–2), 179–186. 
https://doi.org/10.1016/S0040-4020(97)10268-X

4. Aav, R., Kanger, T., Pehk, T., Lopp, M. Synthesis of the AB-ring of 9,11-secosterols. Synlett, 2000, 4, 529–531. 
https://doi.org/10.1055/s-2000-6562

5. Aav, R., Kanger, T., Pehk, T. and Lopp, M. Oxidation of substituted bicyclo[4.4.0]decen-3-ones. Proc. Estonian Acad. Sci. Chem., 2001, 50(3), 138–146. 
https://doi.org/10.3176/chem.2001.3.03

6. Aav, R., Kanger, T., Pehk, T. and Lopp, M. Synthesis of substituted cyclopentanones from 2-oxabicyclo[3.3.0]oct-6-en-3-one. Proc. Estonian Acad. Sci. Chem., 2007, 56(1), 3–13. 
https://doi.org/10.3176/chem.2007.1.01

7. Kõllo, M., Aav, R., Tamp, S., Jarvet, J. and Lopp, M. Asymmetric synthesis of the 2,2,3-trisubstituted cyclo­pentanone, D-ring fragment of 9,11-secosterols. Tetrahedron, 2014, 70(38), 6723–6727. 
https://doi.org/10.1016/j.tet.2014.07.079

8. Kõllo, M., Kasari, M., Kasari, V., Pehk, T., Järving, I., Lopp, M. et al. Designed whole-cell-catalysis-assisted synthesis of 9,11-secosterols. Beilstein J. Org. Chem., 2021, 17, 581–588.
https://doi.org/10.3762/bjoc.17.52

9. Posner, G. H., Mallamo, J. P., Hulce, M. and Frye. L. L. Asymmetric induction during organometallic conjugate addition to enantiomerically pure 2-(arylsulfinyl)-2-cyclo­pentenones. J. Am. Chem. Soc., 1982, 104(15), 4180–4185.
https://doi.org/10.1021/ja00379a022

10. Posner, G. H., Switzer. C. Total synthesis of natural estrone and estradiol methyl ethers in extremely high enantiomeric purity via an asymmetric Michael addition to an unsaturated sulfoxide. J. Am. Chem. Soc., 1986, 108(6), 1239–1244.
https://doi.org/10.1021/ja00266a019

11. Posner, G. H. Asymmetric synthesis of carbon-carbon bonds using sulfinyl cycloalkenones, alkenolides, and pyrones. Acc. Chem. Res., 1987, 20, 72–78.
https://doi.org/10.1021/ar00134a005

12. Pitchen, P., Duñach, E., Deshmukh, M. N. and Kagan. H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. J. Am. Chem. Soc., 1984, 106(26), 8188–8193.
https://doi.org/10.1021/ja00338a030

13. Pitchen, P. and Kagan, H. B. An efficient asymmetric oxidation of sulfides to sulfoxides. Tetrahedron Lett., 1984, 25(10), 1049–1052. 
https://doi.org/10.1016/S0040-4039(01)80097-6

14. Brunel, J.-M., Diter, P., Duetsch, M. and Kagan. H. B. Highly enantioselective oxidation of sulfides mediated by a chiral titanium complex. J. Org. Chem., 1995, 60(24), 8086–8088.
https://doi.org/10.1021/jo00129a060

15. Furia, F. D., Modena, G. and Seraglia, R. Synthesis of chiral sulfoxides by metal-catalyzed oxidation with t-butyl hydro­peroxide. Synthesis, 1984, 4, 325–326.
https://doi.org/10.1055/s-1984-30829

16. Jäälaid, R., Pehk, T., Kanger, T., Lopp, M. and Lille Ü. Chiral sulfoxides from thioketal of bicyclo[3.2.0]hept-2-ene-6-one. Proc. Acad. Sci. Estonian SSR. Chem., 1989, 38(2), 133–134. 
https://doi.org/10.3176/chem.1989.2.13

17. Jäälaid, R., Lopp, M., Pehk, T. and Lille, Ü. The optically active intermediates for synthesis of prostanoids. II Separation of enantiomeric bicyclo[3.2.0]hept-2-ene-6-ones via chiral sulfoxides. Zh. Org. Khim., 1990, 26, 2355–2360. 

18. Xu, N., Zhu, J., Wu, Y.-Q., Zhang, Y., Xia, J.-Y., Zhao, Q. et al. Enzymatic preparation of the chiral (S)-sulfoxide drug esomeprazole at pilot-scale levels.Org. Process Res. Dev., 2020, 24(6), 1124–1130.
https://doi.org/10.1021/acs.oprd.0c00115

19. Zhang, Y., Wu, Y.-Q., Xu, N., Zhao, Q., Yu, H.-L. and Xu, J.-H. Engineering of cyclohexanone monooxygenase for the enantioselective synthesis of (S)-omeprazole. ACS Sustainable Chem. Eng., 2019, 7(7), 7218–7226.
https://doi.org/10.1021/acssuschemeng.9b00224

20. Liu, F., Shou, C., Geng, Q., Zhao, C., Xu, J. and Yu, H. A Baeyer–Villiger monooxygenase from Cupriavidus basilensis catalyzes asymmetric synthesis of (R)-lansoprazole and other pharmaco-sulfoxides. Appl. Microbiol. Biotechnol., 2021, 105(8), 3169–3180.
https://doi.org/10.1007/s00253-021-11230-0

21. Nosek, V. and Misek, J. Chemoenzymatic deracemization of chiral sulfoxides. Angew. Chem. Int. Ed., 2018, 57(31), 9849–9852.
https://doi.org/10.1002/anie.201805858

22. Peng, L., Wen, Y., Chen, Y., Yuan, X., Zhou, Y., Cheng, X. et al. Biocatalytic preparation of chiral sulfoxides through asymmetric reductive resolution by methionine sulfoxide reductase A. ChemCatChem, 2018, 10(15), 3284–3290.
https://doi.org/10.1002/cctc.201800279

23. Nosek, V. and Misek, J. Enzymatic kinetic resolution of chiral sulfoxides – an enantiocomplementary approach. Chem. Commun., 2019, 55(4), 10480–10483.
https://doi.org/10.1039/C9CC05470G

24. Andersen, K. K. Synthesis of (+)-ethyl p-tolyl sulfoxide from (-)-menthyl (-)-p-toluenesulfinate. Tetrahedron Lett., 1962, 3(3), 93–95.
https://doi.org/10.1016/S0040-4039(00)71106-3

25. Andersen, K. K., Gaffield, W., Papanikolaou, N. E., Foley, J. W. and Perkins, R. I. Optically active sulfoxides. The synthesis and rotatory dispersion of some diaryl sulfoxides. J. Am. Chem. Soc., 1964, 86(4), 5637–5646.
https://doi.org/10.1021/ja01078a047

26. Branca, S. and Smith, A. B. A stereospecific total synthesis of (±)-pentenomycin I, (±)-pentenomycin II, and dehydro­pentenomycin I exploiting a versatile latent α-ketovinyl anion equivalent. J. Am. Chem. Soc., 1978, 100(24), 7767–7768.
https://doi.org/10.1021/ja00492a076

27. Hulce, M., Mallomo, J. P., Frye, L. L., Kogan, T. P. and Posner, G. H. (S)-(+)-2-(p-toluenesulfinyl)-2-cyclopentenone: precursor for enantioselective synthesis of 3-substituted cyclopentanones. Org. Synth., 1986, 64(4), 196.
https://doi.org/10.15227/orgsyn.064.0196

28. Ge, W., Zhu, X. and Wei, Y. Iodine-catalyzed selective synthesis of 2-sulfanylphenols via oxidative aromatization of cyclohexanones and disulfides. Adv. Synth. Catal., 2013, 355(4), 3014–3021.
https://doi.org/10.1002/adsc.201300493

29. Lin, Y.-M., Lu, G.-P., Wang, G.-X., Yi, W.-B. Odorless, regioselective synthesis of diaryl sulfides and α-thioaryl carbonyls from sodium arylsulfinates via a metal-free radical strategy in water. Adv. Synth. Catal., 2016, 358, 4100–4105.
https://doi.org/10.1002/adsc.201600846

30. Zhao, S. H., Samuel, O. and Kagan, H. B. Asymmetric oxidation of sulfides mediated by chiral titanium complexes: mechanistic and synthetic aspects. Tetrahedron, 1987, 43(21), 5135–5144.
https://doi.org/10.1016/S0040-4020(01)87689-4

31. Kagan, H. B., Dunach, E., Nemecek, C., Pitchen, P., Samuel, O. and Zhao, S.-H. A short route to chiral sulfoxides using titanium-mediated asymmetric oxidation. Pure Appl. Chem., 1985, 57(12), 1911–1916.
https://doi.org/10.1351/pac198557121911

32. Maddireddy, N. V., Godbole, H. M., Singh, G. P., Kini, S. G. and Shenoy, G. G. Catalytic asymmetric oxidation of sulfides to sulfoxides using (R)-6,6’-diphenyl-BINOL as a chiral ligand. J. Chem. Sci., 2019, 131(64), 1–6.
https://doi.org/10.1007/s12039-019-1635-4

33. Komatsu, N., Hashizume, M., Sugita, T. and Uemura, S. Catalytic asymmetric oxidation of sulfides to sulfoxides with tert-butyl hydroperoxide using binaphthol as a chiral auxiliary. J. Org. Chem., 1993, 58, 4529–4533.
https://doi.org/10.1021/jo00069a009

34. Komatsu, N., Hashizume, M., Sugita, T. and Uemura, S. Kinetic resolution of sulfoxides catalysed by chiral titanium-binaphthol complex. J. Org. Chem., 1993, 58, 7624–7626.
https://doi.org/10.1021/jo00078a060

35. Mase, N., Watanabe, Y., Ueno, Y. and Toru, T. Highly diastereoselective intermolecular β-addition of alkyl radicals to chiral 2-(arylsulfinyl)-2-cycloalkenones. J. Org. Chem., 1997, 62, 7794–7800.
https://doi.org/10.1021/jo971093e

36. Ruano, J. L. G., Fajardo, C., Fraile, A. and Martín, M. R. m-CPBA/KOH: an efficient reagent for nucleophilic epoxidation of gem-deactivated olefins. J. Org. Chem., 2005, 70, 4300–4306.
https://doi.org/10.1021/jo050131o

Back to Issue