eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2021): 1.024
User-centred design in industrial collaborative automated systems; pp. 436–443
PDF | 10.3176/proc.2021.4.10

Simone Luca Pizzagalli, Vladimir Kuts, Tauno Otto

Autonomous systems and collaborative robotics are part of the pillar technologies of the Industry 4.0 (I4.0) paradigm. These include advanced simulations, Digital Twins (DTs) and novel Human Machine Interfaces (HMIs). The increasing development of these technologies together with the higher requirements for customized production processes demands a closer collaboration between operators and automated systems. This leads to a redefinition of how human operators manage and interact with machines and how they are supported in this by adaptable interfaces, simulations and real-time data collection and analysis. New Human-Robot Collaboration (HRC) paradigms are paramount in a scenario where the boundaries between human and machine performed tasks are flexible and increasingly dematerialized. The redefinition of standards, design methods, programming interfaces and assessment techniques is central to facilitate these technological and production changes. The augmentation of human capabilities in the workplace insists on a definition of a framework of requirements that would integrate human, organizational and production needs in the same scenario and workflow. This research proposes a User-Centred Design (UCD) approach which is crucial in addressing the open challenges of HRC systems. Our work regards the DT as well as Augmented and Virtual Reality (AR/VR) technologies as central in this process by considering them key tools for the design, control, and assessment of modern collaborative industrial scenarios.


1. Vaidya, S., Ambad, P. and Bhosle, S. Industry 4.0 − a glimpse. Procedia Manuf., 2018, 20, 233−238.

2. Romero, D., Bernus, P., Noran, O., Stahre, J. and Fast-Berglund, Å. The Operator 4.0: human cyber-physical systems & adaptive automation towards human-automation symbiosis work systems. IFIP Adv. Inf. Commun. Technol., 2016, 488, 677−686.

3. Berg, J. and Lu, S. Review of interfaces for industrial human-robot interaction. Curr. Rob. Rep., 2020, 1, 27−34.

4. Oyekan, J. O., Hutabarat, W., Tiwari, A., Grech, R., Aung, M. H., Mariani, M. P. et al. The effectiveness of virtual environ­ments in developing collaborative strategies between indus­- trial robots and humans. Rob. Comput. Integr. Manuf., 2019, 55(A), 41−54.

5. Burghardt, A., Szybicki, D., Gierlak, P., Kurc, K., Pietruś, P. and Cygan, R. Programming of industrial robots using virtual reality and digital twins. Appl. Sci., 2020, 10(2), 486.

6. Longo, F., Padovano, A. and Umbrello, S. Value-oriented and ethical technology engineering in Industry 5.0: A human-centric perspective for the design of the factory of the future. Appl. Sci., 2020, 10(12), 4182.

7. Nahavandi, S. Industry 5.0 − a human-centric solution. Sustainability, 2019, 11(16), 4371.

8. Villani, V., Pini, F., Leali, F. and Secchi, C. Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications. Mechatronics, 2018, 55, 248−266.

9. Demir, K. A., Döven, G. and Sezen, B. Industry 5.0 and human-robot co-working. Procedia Comput. Sci., 2019, 158, 688−695.

10. Bagdasarov, Z., Martin, A. A. and Buckley, M. R. Working with robots: Organizational considerations. Organ. Dyn., 2020, 49(2), 100679.

11. Romero, D., Stahre, J. and Taisch, M. The Operator 4.0: Towards socially sustainable factories of the future. Comput. Ind. Eng., 2020, 139, 106128.

12. Helms, E., Schraft, R. D. and Hägele, M. Rob@work: Robot assistant in industrial environments. In Proceedings of the 11th IEEE International Workshop on Robot and Human Interactive Communication, Berlin, Germany, September 27, 2002. IEEE, 399−404.

13. De Luca, A. and Flacco, F. Integrated control for pHRI: Collision avoidance, detection, reaction and collaboration. In Proceedings of the 2012 4th IEEE RAS & EMBS Inter­national Conference on Biomedical Robotics and Bio­mecha- tronics (BioRob), Rome, Italy, June 2427, 2012. IEEE, 288–295.

14. ISO/TS 15066:2016. Robots and robotic devices – Col­labo­rative robots. International Organization for Standardization, Geneva, 2016.

15. Argall, B. D., Chernova, S., Veloso, M. and Browning, B. A survey of robot learning from demonstration. Rob. Auton. Syst., 2009, 57(5), 469−483.

16. DelPreto, J., Lipton, J. I., Sanneman, L., Fay, A. J., Fourie, C., Choi, C. and Rus, D. Helping robots learn: a human-robot master-apprentice model using demonstrations via virtual reality teleoperation. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, May 31August 31, 2020. IEEE, 10226–10233.

17. Grieves, M. Digital Twin: manufacturing excellence through virtual factory replication. White Paper, 2014.

18. Barricelli, B. R., Casiraghi, E. and Fogli, D. A survey on Digital Twin: definitions, characteristics, applications, and design implications. IEEE Access, 2019, 7, 167653−167671.

19. Rassõlkin, A., Vaimann, T., Kallaste, A. and Kuts, V. Digital twin for propulsion drive of autonomous electric vehicle. In Proceedings of the 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, October 79, 2019. IEEE, 2020, 1−4.

20. Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C. and Holmström, J. Digital Twin: vision, benefits, boundaries, and creation for buildings. IEEE Access, 2019, 7, 147406–147419.

21. Bruynseels, K., Santoni de Sio, F. and van den Hoven, J. Digital Twins in health care: ethical implications of an emerging engineering paradigm. Front. Genet., 2018, 9, 31.

22. Terkaj, W., Tolio, T. and Urgo, M. A virtual factory approach for in situ simulation to support production and maintenance planning. CIRP Ann., 2015, 64(1), 451−454.

23. Tšukrejev, P., Kruuser, K. and Karjust, K. Production monitoring system development for manufacturing processes of photovoltaic modules. Proc. Est. Acad. Sci., 2019, 68(4), 401−406.

24. Graessler, I. and Poehler, A. Integration of a digital twin as human representation in a scheduling procedure of a cyber-physical production system. In Proceedings of the 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), Singapore, December 1013, 2017. IEEE, 2018, 289−293.

25. Wang, Q., Jiao, W., Wang P. and Zhang, Y. Digital Twin for human-robot interactive welding and welder behavior analysis. IEEE/CAA J. Autom. Sin., 2021, 8(2), 334−343.

26. Buldakova, T. I. and Suyatinov, S. I. Hierarchy of human operator models for Digital Twin. In Proceedings of the International Russian Automation Conference (RusAutoCon), Sochi, Russia, September 814, 2019. IEEE, 1−5.

27. Milgram, P., Drascic, D., Grodski, J. and Restogi, A. Merging real and virtual worlds. Proc. IMAGINAʼ95, 1995.

28. Kuts, V., Sarkans, M., Otto, T., Tähemaa, T. and Bondarenko, Y. Digital Twin: concept of hybrid programming for industrial robots − use case. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition-Advanced Manufacturing. 2020, 2B IMECE2019-10583

29. Horváth, G. and Erdös, G. Gesture control of cyber physical systems. Procedia CIRP, 2017, 63, 184−188.

30. Pérez, L., Rodríguez-Jiménez, S., Rodríguez, N., Usamentiaga, R. and García, D. F. Digital Twin and virtual reality based methodology for multi-robot manufactur­ing cell commissioning. Appl. Sci., 2020, 10(10), 3633.

31. Vosniakos, G. C., Ouillon, L. and Matsas, E. Exploration of two safety strategies in human-robot collaborative manu­facturing using Virtual Reality. Procedia Manuf., 2019, 38, 524−531.

32. Peruzzini, M., Grandi, F. and Pellicciari, M. Exploring the potential of Operator 4.0 interface and monitoring. Comput. Ind. Eng., 2020, 139, 105600.

33. Concannon, D., Flynn, R. and Murray, N. A quality of experience evaluation system and research challenges for networked virtual reality-based teleoperation applications. In Proceedings of the 11th ACM Workshop on Immersive Mixed and Virtual Environment Systems  MMVE. 2019, 10−12.

34. Whitney, D., Rosen, E., Phillips, E., Konidaris, G. and Tellex, S. Comparing robot grasping teleoperation across desktop and virtual reality with ROS reality. In Robotics Research. Springer Proceedings in Advanced Robotics. Springer, Cham, 2020, 10, 335−350. 978-3-030-28619-4_28

35. ISO 9241-210:2019. Ergonomics of Human-System Interaction − Human-Centred Design for Interactive Systems. International Organization for Standardization, Geneva, 2010.

36. Sell, R., Leier, M., Rassõlkin, A. and Ernits, J.-P. Self-driving car ISEAUTO for research and education. In Proceedings of the 2018 19th International Conference on Research and Education in Mechatronics, Delft, Netherlands, June 78, 2018. IEEE, 111−116.

37. Kuts, V., Otto, T., Tähemaa, T. and Bondarenko, Y. Digital twin based synchronised control and simulation of the industrial robotic cell using virtual reality. J. Mach. Eng., 2019, 19(1), 128−144.

38. Rebelo, F., Noriega, P., Duarte, E. and Soares, M. Using virtual reality to assess user experience. Hum. Factors, 2012, 54(6), 964−982.

Back to Issue