
1. INTRODUCTION  
 
The Industry 4.0 (I4.0) revolution has systematized and 
clarified the future scenario for production processes 
towards the development of smart efficient and automated 
systems, including in its leading technologies big data and 
analytics, autonomous robots, simulation, system inte -
gration, industrial internet of things, cyber-physical sys - 
tems, the cloud, additive manufacturing, and Augmented 
and Virtual Reality (AR/VR) [1]. Human-Robot Col -
laboration (HRC) is a crucial aspect in this scenario. 
Recent advancements in industrial automated systems and 
the need of production line flexibility, adaptability to 
market demand and customization are leading to a closer 
collaboration routine between human operators and robots 

in several industrial fields. The boundaries between the 
operator and machines are becoming less evident and 
tangible while the technologies involved in the modern 
production processes have a direct impact on the human 
workers, as they support and perfect human skills by 
sensing and perceptive technologies throughout the 
production lifecycle [2]. The newly born teaming para -
digms are in need of natural, adaptive and intuitive Human 
Machine Interfaces (HMIs) that could support safety in 
HRC but also promote wellbeing and technology accep t -
ance from the human operator perspective [3]. Recent 
studies show how Digital Twins (DTs) AR/VR interfaces 
can be valuable tools in the evaluation of safety [4] 
programming methods [5] and commissioning of HRC 
systems, while only a few studies attempt the combination 
of DT AR/VR technologies in a User-Centred Design 
(UCD) approach focusing on specific use cases. As much 
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assessment techniques is central to facilitate these technological and production changes. The augmentation of human capabilities in 
the workplace insists on a definition of a framework of requirements that would integrate human, organizational and production 
needs in the same scenario and workflow. This research proposes a User-Centred Design (UCD) approach which is crucial in 
addressing the open challenges of HRC systems. Our work regards the DT as well as Augmented and Virtual Reality (AR/VR) 
technologies as central in this process by considering them key tools for the design, control, and assessment of modern collaborative 
industrial scenarios. 
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as industries adopting and implementing I4.0 technologies 
in their production lines are aware of the organization and 
human-related impacts and risks [6], no clear design and 
assessment methods are yet available or sufficient to 
provide a robust framework that would include human 
factors in design and decision-making strategies related 
to HRC. This research aims to address the HRC chal -
lenges by integrating the industrial collaborative robotic 
technologies into a user-centred design and evaluation 
framework. The main research question is whether DT 
AR/VR interfaces could be used as central tools for the 
development of modern user-centred robot collaboration 
systems, improving the efficiency and safety of interaction 
between operators and machines in the manufacturing 
field. 
 
 
2. HRC  TRENDS  IN  I4.0 
 
Modern HRC systems combine the advantages of auto -
mation task repeatability and workload with specialized 
workersʼ soft skills and decision making [7]. Never -
theless, there are some requirements and open challenges 
in the development of efficient collaborative technologies 
including the design and implementation of intuitive 
interfaces. The latter would include different input modes, 
outputs and feedback, and robot centric issues such as 
safety, diversified programming approaches, design and 
control methods [8]. The future massive exploitation of 
collaborative robots in the manufacturing field will lead 
to many production processes and organizational adap -
tations within the industries and a series of human-centred 
concerns [9]. The impact of these technologies extends 
from the industrial environment to the operators with 
many different implications in each step of the production 
system. A large number of challenges are open to evalu -
ation, assessment and integrated design solutions that 
would ease or accommodate operator monitoring tech -
nologies, stress level and workload assessment, tech- 
nology acceptance, efficient reprogramming, ethics, pri -
v acy and handling of the data collected on the shop floor 
[10]. In this sense, the role of the operator itself and the 
type of interaction with the automated technology will be 
radically shifting from cooperation to an augmented and 
symbiotic paradigm. Romero et al. [11] describe this new 
worker as the Operator 4.0 (O4.0), enhanced in its physi -
cal, sensorial and cognitive capabilities by the same 
technologies and systems involved in the fourth industrial 
revolution. This scenario requires the agents involved in 
this new production paradigm to be intelligent, perceptive 
and purposeful, aware of the context, autonomous, able to 
act, reflective, adaptable, learning, and conversational. 
Many of these characteristics are part of the human skills 
and competencies but seemingly missing in any industrial 

robotic system. Technologies that are already employed 
in advanced manufacturing support this evolution to a 
symbiotic enhancement of human operators’ capabilities, 
being at the same time the main causes of ethical and 
human-related issues. IoT, advanced sensors, artificial 
intelligence, and data analysis promote smarter safety 
systems and learning approaches in robotic collaboration 
and programming by grounding their advanced capa -
bilities precisely on human and environment-based data 
and behaviour analysis. Human operators are becoming a 
central matter of concern and the main driver of this 
transition. New methods are necessary to efficiently 
integrate the I4.0 technologies with the new O4.0 para -
digm in a sustainable way. What is missing is a systematic 
approach that would allow the evaluation of all aspects 
involved in the HRC process and make DT AR/VR inter -
faces the main tool bridging humans and robots in a UCD 
approach. 
 
2.1. Collaboration  levels,  safety,  and  programming 
        in  HRC 
 
Levels of collaboration between the operator and auto -
mated systems, safety measures and programming 
methods, which are relying on advanced User Interface 
(UI), are among the most important aspects of HRC 
systems. Collaborative operations between the human 
partner and the robot can have different characterizations. 
In the study by Helms et al. [12] four types of levels are 
described: independent or parallel work, synchronized 
work, simultaneous work and assisted or collaborative 
scenarios. The latter is crucial in our proposed architecture 
and involves sharing workpiece, tools and workspace 
while performing the task at the same time. The rela -
tionship between safety, coexistence and collaboration in 
Human-Robot Interaction (HRI) is defined by De Luca et 
al. [13] as nested levels of the same framework describing 
interactions between humans and robots. While safety is 
considered the basic feature of industrial automated 
systems, coexistence and collaboration describe levels of 
interaction which  involve sharing the same space and 
direct physical contact between the operator and the 
machine. Safety requirements for industrial collaborative 
automated systems are described in [14] and include four 
main different methods: Safety-Rated Monitored Stop, 
Hand Guiding, Speed and Separation Monitoring, and 
Power and Force Limiting. Each of these methods suggest 
a varied type of involvement and level of proximity which 
have various implications in task performance and 
programming operations. Different interaction meth -
ods must be supported by suitable context awareness 
approaches allowing automated systems to behave 
intelligently within the shop floor. These are mediated 
by artificial intelligence, industrial internet of things and 
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advanced sensors which have different impact on the user, 
depending on the specific use case scenario and inter -
action modality. Programming of modern collaborative 
robots involves a variety of dedicated interfaces and 
methods. The most common techniques include: offline 
programming, where the operations are simulated on a 
computer and eventually exported to the robot system; 
online programming which involves traditional teach 
pendant interfaces; walk-through programming, a com -
mon method in the last generation of Cobots, in which the 
operator directly manipulates the robot while paths and 
trajectories are saved by the systems; Programming by 
Demonstration (PbD), where the robotic systems learn the 
operations from actions performed by a human teacher. 
As much as not all robotic systems are suitable to be 
directly manipulated, the need for precise and reliable 
sensorized suites or motion tracking techniques seems to 
add complexity and costs to the adoption of efficient PbD 
methods. Moreover, world state information beyond the 
teacher-operator or the robot itself is not always properly 
mapped and described by the system [15]. AR/VR 
technologies offer a solution to several issues involved in 
programming procedures. The human operator is a pre -
dominant agent in all programming techniques by either 
manipulating the robot, demonstrating and teaching 
trajectories and operations, or as the end-user of complex 
programming software and UIs. Virtual reality interfaces 
offer a repeatable, scalable, controlled and safe test ground 
for innovative programming methods such as kinesthetic 
teaching [16] and user monitoring, and it can be applicable 
to older generations of robots. 
 
2.2. DT  and  AR/VR  interfaces  in  industrial  
       automated  system  scenarios 
 
DTs are advanced representations of the real-world state 
and product or system components allowing for a real-
time synchronized loop transmission of data between the 
digital and real entities. Beyond the first NASA appli -
cations and experimental works in this field and the 
well-known definition provided by Grieves [17], many 
other characterizations have been given to this technology 
[18]. The popularity of DT solutions both in the industrial 
and research field is constantly increasing with examples 
spanning from manufacturing applications, electric engine 
optimization [19] to building construction [20], aviation, 
and healthcare [21]. The flexibility of simulation-driven 
systems allows for applications supporting maintenance 
and production planning [22] to real-time data-driven 
models for product monitoring [23]. A few examples of a 
user-inclusive DT perspective in industrial systems can be 
found in [24−26]. Nevertheless, these approaches seems 
to be limited, both in terms of inclusion of the human 
factors in the loop, and in the design of accessible and 

intuitive interfaces aimed at data visualization and inter -
actions with the digital counterpart [18]. AR/VR tech- 
nologies can merge, on different levels and with different 
degrees of blending, the virtual and the real world [27], 
facilitating data visualization and creating a means of 
interaction between simulated systems and their real 
counterpart. A major advantage of AR/VR HMI for HRC 
is the inclusion of the end-user in the robotic cell’s User 
Interface. By being an active agent in the automated 
system control UI, which in some cases coincides with the 
DT of the systems and factory floor environment itself, 
the operator becomes part of the twinning loop. This 
allows for direct data collection, task repeatability, user 
and environmental monitoring. Many recent studies have 
focused on experimental approaches to DT AR/VR in -
terfaces with applications aimed at programming [28], 
control [29], design of collaborative industrial cells [30], 
and assessment of safety in HRC systems [31]. Only a 
limited number of examples address the potential of these 
technologies in becoming UCD and evaluation tools for 
advanced industrial systems and workstations [6,32]. 
Other experimental works, [4,33,34], attempt to adopt 
several user and system evaluation metrics for the as -
sessment of immersive DT UI and interactions. These ex - 
am ples are limited to specific use cases and are not pro- 
viding sufficiently comprehensive study protocols for HRI 
both from the technological systemʼs and userʼs point of 
view. The shifting roles of automated technologies and 
human workforce in modern industry need a design and 
evaluation framework that can allow testing and vali dating 
interface efficiency for robot control, real-time system 
monitoring and synchronization, and impact on the user.  
 
 
3. UCD  FOR  HRC 
 
A different design approach is indispensable to efficiently 
integrate the new paradigms of I4.0 and O4.0 require -
ments into HRC. This framework should be able to inte - 
grate into the same design scope the above-mentioned 
challenges of collaborations methods, task organization, 
safety, programming, accessible UIs, production process 
organization and technology impact on the operator and 
factory organization. We propose that this integration 
should happen along the UCD iterative design process as 
defined in [35]. This design method places the end users 
at the centre and all along the design process involves 
different stakeholders and multidisciplinary resources in 
planning, testing, commissioning, and assessment of 
the system. Open multidisciplinary approaches can be 
found in design of complex intelligent systems such as 
autonomous vehicles [36]. Requirements should be 
drawn by analysing the target user group, the specific 
context of use, including organizational needs and 
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objectives. Personal information, as well as demographics, 
knowledge of technical solutions, health-related issues, or 
body functionality, are at the base of the characterization 
of generic user models involved in the preliminary 
design process. Ethnographic research methods, including 
questionnaires, interviews, surveys, direct observations, 
can help in clarifying the needs and behaviours of the 
involved stakeholders at different levels of the context of 
use and design phases. Figure 1 shows how the new design 

approach allocates safety, collaboration modes, interfaces, 
task oriented and managerial requirements along the 
proposed iterative design and assessment process, match -
ing the requirements and technologies which are typically 
involved in HRC with the UCD loop and specifications.  

Our research proposal puts DT AR/VR interfaces at 
the centre of this design method constituting the O4.0 
layer in the HRC structure and favouring interactions with 
the robotics systems. Figure 2 demonstrates the UCD 
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approach applied to the use case developed and discussed 
in [37]. This industrial robot use case shows how DT 
AR/VR technologies are able to include the operator in 
the HRC system interfaces. 

Assessment of usersʼ environmental and organiza -
tional aspects can be achieved by adopting real-time 
simulations and interaction technologies. These are based 
on industrial IoT, artificial intelligence, advanced sensors 
and data analysis having human, environment data and 
be haviour analysis as the main target, and smart, safe and 
easy-to-manage collaborative robotic systems as the main 
goal. 
 
 
4. USER­CENTRED  DT  AR/VR  HRC  SYSTEM  
    ARCHITECTURE 
 
DT AR/VR technologies demonstrate high adaptability 
and scalability towards different features, programming 
methods and interfaces of industrial automated systems. 
Immersive simulations include the user in the DT loop 
and integrate environmental state information, allowing 
for safe reproducible and controlled experimental test 
grounds for the configuration and design of cyber-physical 
systems. For this reason, VR technologies could be 
adopted in existing ethnographic research methods [38]. 
The fast-paced advancements in hardware technologies 
favour the integration of motion tracking, eye-tracking, 
environmental or physiological sensors with VR head-
mounted displays and controllers. This enables many 
different interaction modalities, gestures, vocal or motion 
control with the digitalized counterpart of real machinery 

as well as the possibility of adopting advanced UI 
adaptivity and adaptability methods. Figure 3 shows the 
software integration model for DT AR/VR based collab -
orative automated system, structured along a UCD 
approach.  

This model contributes to a highly immersive VR/AR 
training and control system. It provides an agent with 
higher-level involvement than customary training or 
control, and thus being more efficient in the HRC process. 
As already mentioned, there is a need for new metrics to 
assess and validate DT AR/VR interfaces for manu -
facturing systems that would respond to advancements 
in I4.0 technologies and new production requirements. 
The central point of the architecture and the proposed 
approach is that the metrics and methods for advanced 
collaborative systems should be developed in DT 
immersive interfaces first. VR interactive systems 
constitute the link between interaction and simulation by 
being at the same time the technology that allows humans 
to interact with the simulation and the HRC interface 
itself.  In this scenario a further clarification is necessary 
on how one interacts within the virtual world, based on 
Human Computer Interaction (HCI) methodologies and a 
categorization of interaction metaphors and illusions 
allowed by the simulated world. It should also be clarified 
what the consequences of the interactions are on the DT 
of the robotic system in the simulation, based on DT 
technology enablers, requirements and performance; and 
how one interacts with the computer system and 
technology  allowing for the simulation and interaction in 
the DT. The latter is also based on HCI standards but has 
proved to have both unprecedented built-in multimodal 
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potential and impact on the user. The proposed archi -
tecture re sponds to these requirements by efficiently 
allocating evaluation of DT system performance, HMI 
efficacy and usability, impact on the user and HRI as -
sessment. 

 
 

5. CONCLUSIONS 
 
Holistic design solutions are necessary to respond to the 
impelling changes in industrial automated systems and the 
newly gained central position of the operators in col -
laborative scenarios. In this context human stakeholders, 
context of use, and organization of the production systems 
need to be reconsidered and optimized to match the new 
industrial requirements. UCD demonstrates how these 
elements can be organized in a design process that would 
iteratively plan, design and assess the newly adopted 
solutions while taking into account all the above-
mentioned critical elements. The central technologies in 
this process are DT AR/VR interfaces which have already 
demonstrated their scalability and efficiency in robotic 
system control and interaction, to support the evolution of 
O4.0 capabilities on the shop floor. As already mentioned, 
immersive visualization and interaction technologies 
include the user in the simulation and system interface 
supporting the evaluation of metrics and methods for HMI 
in HRC scenarios from UCD perspective. This new design 
and assessment solution would facilitate both the evalu -
ation of psychological and physiological well-being 
ergonomics factors in HRI and the efficiency of advanced 
production processes and industrial cell deployment. 
Future research will give an in-depth overview of the state 
of the art of the DT AR/VR applications in the industrial 
field by comparing the type of use case scenarios, inter -
action methods, and assessment metrics. Based on the 
existing use case presented in Fig. 2, future experimental 
studies will try to assess the interaction of the human 
operator with each layer of the proposed architecture 
including the interaction with the robot, with the AR/VR 
technologies and hardware, and the DT simulation of the 
industrial system. Future user-centred studies will find 
shared evaluation metrics between the different interaction 
levels, the design solutions of which would allow best 
performance and low impact on the user and on how 
AR/VR are best integrated with the DT loop in HRC 
scenarios. Interrelations between the elements of the 
proposed architecture need to be evaluated in light of 
the defined assessment parameters. Customization and 
visualization of these connections might also be taken 
into consideration for a better fit into different use case 
scenarios. From the technical point of view cyber -
security for user and environmental data collection and 
handling will have to be addressed. Connectivity and 

synchronization methods between the physical and virtual 
systems will be further explored and extended to include 
virtual distributed infrastructure for control and interaction 
with different machinery that will offer an experimental 
test ground and modular virtual interface for both system 
integrators and researchers. 
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Kasutajakeskne  disain  tööstuslikes  koostööautomaatsüsteemides 
 

Simone Luca Pizzagalli, Vladimir Kuts ja Tauno Otto 
 
Autonoomsed süsteemid ja koostöörobootika on Tööstus 4.0 paradigma ühed olulisemad tugitehnoloogiad. Siia hulka 
kuuluvad täiustatud simulatsioonid, digitaalsed kaksikud ja uudsed inim-masinliidesed. Nende tehnoloogiate areng koos 
kohandatud tootmisprotsessidele esitatavate kõrgemate nõuetega eeldab tihedamat koostööd operaatorite ja automati-
seeritud süsteemide vahel. Seetõttu tuleb ümber defineerida kogu senine töökorraldus: kuidas inimoperaatorid masinaid 
haldavad ja nendega suhtlevad ning kuidas neid selleks kohandatavad liidesed, simulatsioonid ja reaalajas andmete ko-
gumine ning analüüs toetavad. Uued inimese ja roboti koostöö paradigmad on ülimalt olulised stsenaariumis, kus piirid 
inimeste ja masinate sooritatavate ülesannete vahel on paindlikud ja hägusad. Standardite, disainimeetodite, program-
meerimisliideste ja hindamismeetodite uuesti määratlemine on nende tehnoloogiliste ja tootmismuudatuste hõlbustamisel 
kesksel kohal. Inimvõimekuse suurendamine töökohal tingib vajaduse määratleda nõuete raamistik, mis integreeriks 
inim-, organisatsiooni- ja tootmisvajadused samasse stsenaariumi ja töövoogu. Antud uurimus pakub lahendusena välja 
kasutajakeskse disaini eelistamise, mis on inimese ja roboti koostöösüsteemidele avatud väljakutsete lahendamisel üli-
oluline. Meie metoodika peab digitaalseid kaksikuid ning liit- ja virtuaalreaalsuse tehnoloogiaid peamisteks tööriistadeks 
nüüdisaegsete koostööstsenaariumide kujundamisel, juhtimisel ja hindamisel. 
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