ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Implementation of Digital Twins for electrical energy conversion systems in selected case studies; pp. 19–39

Full article in PDF format | 10.3176/proc.2021.1.03

Authors
Anton Rassõlkin, Tamás Orosz, Galina Lvovna Demidova, Vladimir Kuts, Viktor Rjabtšikov, Toomas Vaimann, Ants Kallaste

Abstract

Reference implementation of Digital Twins for electrical energy conversion systems is an important and open question in the industrial domain. Digital Twins can predict the future performance, behaviour, and maintenance needs of a complex system. Today the concept of Digital Twins is not only an emulation or simulation of the physical object along with its development history but also contains much information from the respective manufacturers and services. This paper presents the current state-of-the-art of Digital Twins in relation to some interesting novel applications from different fields of electrical engineering. The objective of the paper is to give an overview of the successful application of Digital Twins in electrical energy conversion systems, such as industrial robotics and wind turbines; to discuss trends in applications like electric vehicles; and to suggest new applications, such as telescopes. Special attention is paid to the possible application of Digital Twins in faults diagnostics and prognostics of electrical energy conversion systems. Successful implementation of Digital Twins in any electrical energy conversion system diagnostics and prognostics allows for low-cost maintenance, higher utilization of the individual devices and systems, as well as lower usage of material and human resources. A SWOT analysis was performed for Digital Twin applications in electrical energy conversion systems. The latter is a useful analysis technique that explores possibilities for new achievements or solutions to existing problems and makes decisions about the best path.


References

1. Weyer, S., Schmitt, M., Ohmer, M., and Gorecky, D. Towards industry 4.0-standardization as the crucial challenge for highlymodular, multi-vendor production systems. IFAC-PapersOnLine, 2015, 48(3), 579–584.
https://doi.org/10.1016/j.ifacol.2015.06.143

2. Li, Q., Jiang, H., Tang, Q., Chen, Y., Li, J., and Zhou, J. Smart manufacturing standardization: reference model and standards framework. In OTM Confederated International Conferences ”On the Move to Meaningful Internet Systems”, October 24–28, 2016, Rhodes, Greece. Lecture Notes in Computer Science, Vol. 10034, Springer, Cham, 2016, 16–25.
https://doi.org/10.1007/978-3-319-55961-2_2

3. DIN: A collection of standards concerning Industry 4.0. 
https://www.din.de/en/innovation-and-research/industry-4-0/ 

4. Ghobakhloo, M. The future of manufacturing industry: a strategic roadmap toward industry 4.0. J. Manuf. Technol. Manag., 2018, 29(6), 910–936.
https://doi.org/10.1108/JMTM-02-2018-0057

5. Stock, T. and Seliger, G. Opportunities of sustainable manufacturing in industry 4.0. Procedia CIRP, 2016, 40, 536–541.
https://doi.org/10.1016/j.procir.2016.01.129

6. El Saddik, A. Digital twins: the convergence of multimedia technologies. IEEE MultiMedia, 2018, 25(2), 87–92.
https://doi.org/10.1109/MMUL.2018.023121167

7. Sharma, M. and George, J. Digital twin in the automotive industry: driving physical-digital convergence. 2018. 
https://www.tcs.com/content/dam/tcs/pdf/Industries/manufacturing/abstract/industry-4-0-and-digital-twin.pdf

8. Tao, F. and Zhang, M. Digital twin shop-floor: a new shop-floor paradigm towards smart manufacturing. IEEE Access, 2017, 5, 20418–20427.
https://doi.org/10.1109/ACCESS.2017.2756069

9. Grieves, M. and Vickers, J. Digital twin: mitigating unpre­dictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems (Kahlen, F. J., et al., eds). Springer, Cham, 2017, 85–113.
https://doi.org/10.1007/978-3-319-38756-7_4

10. Barricelli, B. R., Casiraghi, E., and Fogli, D. A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access, 2019, 7, 167653–167671.
https://doi.org/10.1109/ACCESS.2019.2953499

11. Rosen, R., von Wichert, G., Lo, G., and Bettenhausen, K. D. About the importance of autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine, 2015, 48(3), 567–572.
https://doi.org/10.1016/j.ifacol.2015.06.141

12. Weyer, S., Meyer, T., Ohmer, M., Gorecky, D., and Zuhlke, D. Future modeling and simulation of CPS-based factories: an example from the automotive industry. IFAC-PapersOnLine, 2016, 49(31), 97–102.
https://doi.org/10.1016/j.ifacol.2016.12.168

13. Orosz, T. Evolution and modern approaches of the power transformer cost optimization methods. Periodica Poly­technica Electrical Engineering and Computer Science, 2019, 63(1), 37–50.
https://doi.org/10.3311/PPee.13000

14. Abetti, P., Cuthbertson, W., and Williams, S. Philosophy of applying digital computers to the design of electric apparatus. In Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics, 1958, 77(3), 367–379.
https://doi.org/10.1109/TCE.1958.6372814

15. Boschert, S. and Rosen, R. Digital twin–the simulation aspect. In Mechatronic Futures (Hehenberger, P., Bradley, D., eds). Springer, Cham, 2016, 59–74.
https://doi.org/10.1007/978-3-319-32156-1_5

16. ANSYS: Engineering simulation & 3D design software. 
http://www.ansys.com/

17. Zhang, L., Wang, W., and Shi, Y. Research on maximum power point tracking based on an improved fuzzy-PD dual-mode algorithm. In Proceedings of the 2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), October 14–16, 2017, Shanghai, China. IEEE, 2017, 1–6.
https://doi.org/10.1109/CISP-BMEI.2017.8302309

18. Alexandrov, N. M., Hussaini, M. Y. (eds). Multidisciplinary Design Optimization: State of the Art. SIAM, Philadelphia, PA, 1997.

19. Karban, P., Mach, F., Kŭs, P., Pánek, D., and Doležel, I. Numerical solution of coupled problems using code Agros2D. Computing, 2013, 95(1), 381–408.
https://doi.org/10.1007/s00607-013-0294-4

20. Karban, P., Pánek, D., Orosz, T., Petrášová, I., and Doležel, I. FEM based robust design optimization with Agros and Ārtap. Comput. Math. Appl., 2020. https://doi.org/10.1016/ j.camwa.2020.02.010

21. Tóth, B. Multi-field dual-mixed variational principles using non-symmetric stress field in linear elastodynamics. J. Elast., 2016, 122(1), 113–130.
https://doi.org/10.1007/s10659-015-9535-4

22. Haag, S. and Anderl, R. Digital twin – proof of concept. Manuf. Lett., 2018, 15, 64–66.
https://doi.org/10.1016/j.mfglet.2018.02.006

23. Madni, A. M., Madni, C. C., and Lucero, S. D. Leveraging digital twin technology in model-based systems engineering. Systems, 2019, 7(1), 7.
https://doi.org/10.3390/systems7010007

24. Xu, G. and Xia, L. Short-term prediction of wind power based on adaptive LSTM. In Proceedings of the 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), October 20–22, 2018, Beijing, China, 1–5.
https://doi.org/10.1109/EI2.2018.8582536

25. Zhang, L. Specification and design of cyber physical systems based on system of systems engineering approach. In Proceedings of the 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES)October 19–23, 2018, Wuxi, China, 300–303.
https://doi.org/10.1109/DCABES.2018.00084

26. Peter, G. P. Calculations for short circuit withstand capability of a distribution transformer. Annals of Faculty Engineering Hunedoara. International Journal of Engineering, 2011, 9(3), 243–246.

27. Barrère, M., Hankin, C., Barboni, A., Zizzo, G., Boem, F., Maffeis, S., et al. CPS-MT: a real-time cyber-physical system monitoring tool for security research. In Proceedings of the 2018 IEEE 24th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), August 28–31, 2018,Hakodate, Japan, 240–241.
https://doi.org/10.1109/RTCSA.2018.00040

28. Schutzer, K., de Andrade Bertazzi, J., Sallati, C., Anderl, R., and Zancul, E. Contribution to the development of a digital twin based on product lifecycle to support the manufacturing process. Procedia CIRP, 2019, 84, 82–87.
https://doi.org/10.1016/j.procir.2019.03.212

29. Schluse, M. and Rossmann, J. From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems. In Proceedings of the 2016 IEEE International Symposium on Systems Engineering (ISSE), October 3–5, 2016, Edinburgh, UK, 1–6.
https://doi.org/10.1109/SysEng.2016.7753162

30. Iskhakova, A., Iskhakov, A., Meshcheryakov, R., and Jharko, E. Method of verification of robotic group agents in the conditions of communication facility suppression. IFAC-PapersOnLine, 2019, 52(13), 1397–1402.
https://doi.org/10.1016/j.ifacol.2019.11.394

31. He, B., Wang, S., and Liu, Y. Underactuated robotics: a review. Int. J. Adv. Robot. Syst., 2019, 16(4), 1729881419 862164.
https://doi.org/10.1177/1729881419862164

32. Li, X., Luo, X., Wang, J., Zhu, Y., and Guan, X. Bearing-based formation control of networked robotic systems with parametric uncertainties. Neurocomputing, 2018, 306, 234–245.
https://doi.org/10.1016/j.neucom.2018.04.052

33. Khalaji, A. K. Modeling and control of uncertain multibody wheeled robots. Multibody Syst. Dyn., 2019, 46(3), 257– 279.
https://doi.org/10.1007/s11044-019-09673-5

34. International Federation of Robotics. 
https://ifr.org/

35. Kangru, T., Riives, J., Otto, T., Pohlak, M., and Mahmood, K. Intelligent decision making approach for performance evaluation of a robot-based manufacturing cell. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, November 9–15, 2018, Pittsburgh, PA, USA. 
https://doi.org/10.1115/IMECE2018-86666

36. Kuts, V., Sarkans, M., Otto, T., Tähemaa, T., and Bondarenko, Y. Digital twin: concept of hybrid pro­gramming for industrial robots–use case. In Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition, November 11–14, 2019, Salt Lake City, UT, USA. 
https://doi.org/10.1115/IMECE2019-10583

37. Kuts, V., Otto, T., Tähemaa, T., Bukhari, K., and Pataraia, T. Adaptive industrial robots using machine vision. In Proceedings of the ASME 2018 International Mechanical Engineering Congress and Exposition, November 9–15, 2018, Pittsburgh, PA, USA. 
https://doi.org/10.1115/IMECE 2018-86720

38. Sell, R., Coatanea, E., and Christophe, F. Important aspects of early design in mechatronic. In Proceedings of the 6th International Conference of DAAAM Baltic Industrial Engineering, April 24–26, 2008, Tallinn, Estonia, 177182.

39. Statista – The Statistics Portal for Market Data, Market Research and Market Studies. 
https://www.statista.com/

40. Estonian Road Administration, Traffic Safety Programme 20162025. 
https://www.mnt.ee/eng

41. Electric mobility in Germany. 
https://www.mnt.ee/eng

42. Autostat. 
https://eng.autostat.ru

43. Rassõlkin, A. and Vodovozov, V. A test bench to study propulsion drives of electric vehicles. In Proceedings of the International Conference-Workshop Compatibility in Power Electronics (CPE), June 5–7, 2013, Ljubljana, Slovenia. IEEE, 2013, 275–279.
https://doi.org/10.1109/CPE.2013.6601169

44. Rassõlkin, A., Vaimann, T., Kallaste, A., and Kuts, V. Digital twin for propulsion drive of autonomous electric vehicle. In 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON), October 7–9, 2019, Riga, Latvia, 1–4.
https://doi.org/10.1109/RTUCON48111.2019.8982326

45. Mi, C. and Masrur, M. A. Hybrid Electric Vehicles: Principles and Applications with Practical Perspectives, 2nd ed. John Wiley & Sons, 2017.
https://doi.org/10.1002/9781118970553

46. Martínez, C. M., Hu, X., Cao, D., Velenis, E., Gao, B., and Wellers, M. Energy management in plug-in hybrid electric vehicles: recent progress and a connected vehicles perspective. IEEE Transactions on Vehicular Technology, 2016, 66(6), 4534–4549.
https://doi.org/10.1109/TVT.2016.2582721

47. Senanayaka, J. S. L., Khang, H. V., and Robbersmyr, K. G. Multiple classifiers and data fusion for robust diagnosis of gearbox mixed faults. IEEE Transactions on Industrial Informatics, 2018, 15(8), 4569–4579.
https://doi.org/10.1109/TII.2018.2883357

48. Rassõlkin, A., Kallaste, A., and Vaimann, T. Dynamic control system for electric motor drive testing on the test bench. In Proceedings of the 2015 9th International Conference on Compatibility and Power Electronics (CPE), June 24–26, 2015, Costa da Caparica, Portugal. IEEE, 252–257.
https://doi.org/10.1109/CPE.2015.7231082

49. Kaban, S., Dong, Z., and Crawford, C. Performance modeling and benchmark analysis of an advanced 4WD series-parallel PHEV using dynamic programming. In Proceedings of the 2015 IEEE Vehicle Power and Propulsion Conference (VPPC), October 19–22, 2015, Montreal, QC, Canada, 698–704.
https://doi.org/10.1109/VPPC.2015.7352994

50. Rassõlkin, A. and Vodovozov, V. Experimental setup to explore the drives of battery electric vehicles. World Electr. Veh. J., 2013, 6(4), 1109–1114.
https://doi.org/10.3390/wevj6041109

51. Sell, R., Aryassov, G., Petritshenko, A., and Kaeeli, M. Kinematics and dynamics of configurable wheel-leg. In Proceedings of the 8th International Conference of DAAAM Baltic Industrial Engineering, April 19–21, 2012, Tallinn, Estonia, 345–351.

52. Rassõlkin, A., Sell, R., and Leier, M. Development case study of the first Estonian self-driving car, ISEAUTO. Electrical, Control and Communication Engineering, 2018, 14(1), 81–88.
https://doi.org/10.2478/ecce-2018-0009

53. Kulik, E., Tran, X. T., and Anuchin, A. Estimation of the requirements for hybrid electric powertrain based on analysis of vehicle trajectory using GPS and accelerometer data. In Proceedings of the 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED)January 31–February 2, 2018, Moscow, Russia. IEEE, 2018, 1–5.
https://doi.org/10.1109/IWED.2018.8321394

54. Alam, K. M. and El Saddik, A. C2PS: a digital twin architecture reference model for the cloud-based cyber-physical systems. IEEE access, 2017, 5, 2050–2062.
https://doi.org/10.1109/ACCESS.2017.2657006

55. Sell, R., Leier, M., Rassõlkin, A., and Ernits, J.-P. Self-driving car ISEAUTO for research and education. In Proceedings of the 2018 19th International Conference on Research and Education in Mechatronics (REM), June 7–8, 2018, Delft, the Netherlands. IEEE, 2018, 111–116.
https://doi.org/10.1109/REM.2018.8421793

56. Daily, M., Medasani, S., Behringer, R., and Trivedi, M. Self-driving cars. Computer, 2017, 50(12), 18–23.
https://doi.org/10.1109/MC.2017.4451204

57. Sell, R., Leier, M., Rassõlkin, A., and Ernits, J.-P. Autonomous last mile shuttle ISEAUTO for education and research. International Journal of Artificial Intelligence and Machine Learning (IJAIML), 2020, 10(1), 18–30.
https://doi.org/10.4018/IJAIML.2020010102

58. Kalra, N. and Paddock, S. M. Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract., 2016, 94, 182–193.
https://doi.org/10.1016/j.tra.2016.09.010

59. Xu, Y., Zou, Y., and Sun, J. Accelerated testing for automated vehicles safety evaluation in cut-in scenarios based on importance sampling, genetic algorithm and simulation applications. J. Intell. Connect. Veh., 2018, 1(1), 1–4.
https://doi.org/10.1108/JICV-01-2018-0002

60. ISEAUTO Project. 
https://iseauto.taltech.ee/

61. Glaessgen, E. H. and Stargel, D. S. The digital twin paradigm for future NASA and US Air Force vehicles. In Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference: Special session on the Digital Twin-, April 23–26, 2012, Honolulu, HI, USA. 
https://arc.aiaa.org/doi/abs/10.2514/6.2012-1818

62. Shubenkova, K., Valiev, A., Mukhametdinov, E., Shepelev, V., Tsiulin, S., and Reinau, K. H. Possibility of digital twins technology for improving efficiency of the branded service system. In Proceedings of the 2018 Global Smart Industry Conference (GloSIC), November 13–15, 2018, Chelyabinsk, Russia. IEEE, New York, NY, 2018, 1–7.
https://doi.org/10.1109/GloSIC.2018.8570075

63. Brunner, P., Denk, F., Huber, W., and Kates, R. Virtual safety performance assessment for automated driving in complex urban traffic scenarios. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), October 27–30, 2019, Auckland, New Zealand, 679–685.
https://doi.org/10.1109/ITSC.2019.8917517

64. Sesto, E. and Lipman, N. H. Wind energy in Europe. Wind Engineering, 1992, 16(1), 3547.

65. Wind energy in Europe in 2019. 
https://windeurope.org/about-wind/statistics/european/wind-energy-in-europe-in-2019/

66. Electricity generation – Energy Charts. 
https://www.energy-charts.de/energypie.htm

67. Tarbimine ja tootmine (production and consumption) – Elering LIVE. 
https://dashboard.elering.ee/et/system/production-and-consumption/

68. Orlova, S., Rassõlkin, A., Kallaste, A., Vaimann, T., and Belahcen, A. Lifecycle analysis of different motors from the standpoint of environmental impact. Latvian Journal of Physics and Technical Sciences, 2016, 53(6), 37–46.
https://doi.org/10.1515/lpts-2016-0042

69. Sivalingam, K., Sepulveda, M., Spring, M., and Davies, P. A review and methodology development for remaining useful life prediction of offshore fixed and floating wind turbine power converter with digital twin technology perspective. In Proceedings of the 2018 2nd International Conference on Green Energy and Applications (ICGEA), March 24–26, 2018, Singapore. IEEE, 2018, 197–204.
https://doi.org/10.1109/ICGEA.2018.8356292

70. Oñederra, O., Asensio, F. J., Eguia, P., Perea, E., Pujana, A., and Martinez, L. MV cable modeling for application in the digital twin of a windfarm. In Proceedings of the 2019 International Conference on Clean Electrical Power (ICCEP), July 2–4, 2019, Otranto, Italy. IEEE, New York, NY, 617–622.
https://doi.org/10.1109/ICCEP.2019.8890166

71. Ebrahimi, A. Challenges of developing a digital twin model of renewable energy generators. In Proceedings of the 2019 IEEE 28th International Symposium on Industrial Electronics (ISIE), June 12–14, 2019, Vancouver, BC, Canada, 1059–1066.
https://doi.org/10.1109/ISIE.2019.8781529

72. Weigelt, M., Kink, J., Mayr, A., v. Lindenfels, J., Kuhl, A., and Franke, J. Digital twin of the linear winding process based on explicit finite element method. 2019 9th International Electric Drives Production Conference (EDPC), February 27, 2019, Esslingen, Germany, 1–7.
https://doi.org/10.1109/EDPC48408.2019.9011857

73. Fact sheet GE power & water renewable energy 
https://www.ge.org (accessed 2020-03-16).

74. Digital twin software – enhance asset and process performance. 
https://www.seebo.com/digital-twin-software/

75. Digital manufacturing efficiency – PTC. 
https://www.ptc.com/en/solutions/digital-manufacturing/

76. Vaimann, T., Kudrjavtsev, O., Kilk, A., Kallaste, A., and Rassõlkin, A. Design and prototyping of directly driven outer rotor permanent magnet generator for small scale wind turbines. Adv. Electr. Electron. Eng., 2018, 16(3), 271–278.
https://doi.org/10.15598/aeee.v16i3.2698

77. Lukin, A., Demidova, G. L., Lukichev, D. V., Rassõlkin, A., Kallaste, A., Vaimann, T., et al. Experimental prototype of high-efficiency wind turbine based on magnus effect. In Proceedings of the 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), January 27–30, 2020, Moscow, Russia. IEEE, 2020, 1–6.
https://doi.org/10.1109/IWED48848.2020.9069565

78. Tao, F., Cheng, J., Qi, Q., Zhang, M., Zhang, H., and Sui, F. Digital twin-driven product design, manufacturing and service with big data.  Int. J. Adv. Manuf. Technol., 2018, 94, 3563–3576.
https://doi.org/10.1007/s00170-017-0233-1

79. Tao, F., Zhang, M., Liu, Y., and Nee, A. Y. C. Digital twin driven prognostics and health management for complex equipment. CIRP Annals, 2018, 67(1), 169–172.
https://doi.org/10.1016/j.cirp.2018.04.055

80. Pargmann, H., Euhausen, D., and Faber, R. Intelligent big data processing for wind farm monitoring and analysis based on cloud-technologies and digital twins: a quantitative approach. In Proceedings of the 2018 IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), April 20–22, 2018, Chengolu, China, 233–237.
https://doi.org/10.1109/ICCCBDA.2018.8386518

81. Imaie, E., Sheikholeslami, A., and Ahmadi Ahangar, R. Improving short-term wind power prediction with neural network and  ICA algorithm and input feature selection. Journal of Advances in Computer Research, 2014, 5(3), 13–34.

82. AhmadiAhangar, R., Rosin, A., Niaki, A. N., Palu, I., and Korõtko, T. A review on real-time simulation and analysis methods of microgrids. International Transactions on Electrical Energy Systems, 2019, 29(11), e12106.
https://doi.org/10.1002/2050-7038.12106

83. Demidova, G. L., Lukichev, D. V., and Kuzin, A. Y. A genetic approach for auto-tuning of adaptive fuzzy PID control of a telescope’s tracking system. Procedia Computer Science, 2019, 150, 495–502.
https://doi.org/10.1016/j.procs.2019.02.084

84. Chen, Z., Zhang, R., Chen, Z., Yang, S., and Hu, Q.-Q. Experiment and modal analysis on the primary mirror structure of space solar telescope. In Proceedings of the SPIE. Space Telescopes and Instrumentation I: Optical, Infrared, and Millimeter, May 24–31, 2006, Orlando, FL, USA, 62654B.
https://doi.org/10.1117/12.670230

85. Kracht, K., v. Wagner, U., and Segert, T. Analysis of the vibration behavior of the Dobson space telescope. In Proceedings in Applied Mathematics and Mechanics (PAMM), 2007, 7(1), 4050035–4050036.
https://doi.org/10.1002/pamm.200701016

86. Bely, P. Y. (ed.). The Design and Construction of Large Optical Telescopes. Springer, New York, NY, 2003.
https://doi.org/10.1007/b97612

87. Withington, S. and Murphy, J. A. Modal analysis of partially coherent submillimeter-wave quasi-optical systems. IEEE Trans. Antennas Propag., 1998, 46(11), 1651–1659.
https://doi.org/10.1109/8.736617

88. Aubrun, J.-N., Lorell, K. R., Havas, T. W., and Henninger, W. C. Performance analysis of the segment alignment control system for the ten meter telescope. Automatica, 1988, 24(4), 437–453.
https://doi.org/10.1016/0005-1098(88)90090-8

89. Schipani, P. and Mancini, D. Modeling the VST telescope and the effect of the wind disturbance on its performance. IFAC Proceedings Volumes, 2002, 35(1), 179–185.
https://doi.org/10.3182/20020721-6-ES-1901.01583

90. Lukichev, D. V., Demidova, G. L., and Brock, S. Comparison of adaptive fuzzy PID and ANFIS controllers for precision positioning of complex object with nonlinear disturbance – study and experiment. In Proceedings of the 2018 20th European Conference on Power Electronics and Applications (EPE’18 ECCE Europe), September 17–21, 2018, Riga, Latvia. IEEE, New York, NY, P.1–P.9.

91. Molfese, C., Schipani, P., Capaccioli, M., Sedmak, G., and D’Orsi, S. Survey telescope control electronics. In Proceedings of the 2008 International Symposium on Power Electronics, Electrical Drives, Automation and Motion, June 11–13, 2008, Ischia, Italy. IEEE, 2008, 523–527.
https://doi.org/10.1109/SPEEDHAM.2008.4581188

92. Costa, A., Sciacca, E., Vitello, F., Becciani, U., Massimino, P., Riggi, S., et al. An integrated workspace for the Cherenkov Telescope Array. Future Gener. Comput. Syst., 2019, 94, 811–819.
https://doi.org/10.1016/j.future.2018.04.009

93. Kritzinger, W., Karner, M., Traar, G., Henjes, J., and Sihn, W. Digital Twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine, 2018, 51(11), 1016–1022.
https://doi.org/10.1016/j.ifacol.2018.08.474

94. Hehenberger, P. and Bradley, D. Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and their Designers. Springer, Cham, 2016.
https://doi.org/10.1007/978-3-319-32156-1

95. Orosz, T., Sörés, P., Raisz, D., and Tamus, Z. Á. Analysis of the green power transition on optimal power transformer designs. Period. Polytech. Electr. Eng. Comput. Sci., 2015, 59(3), 125–131.
https://doi.org/10.3311/PPee.8583

96. Dean, J. Pricing Policies for New Products. HBR Classics, 1976.

97. Wolpert, D. H. and Macready, W. G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput., 1997, 1(1), 67–82.
https://doi.org/10.1109/4235.585893

98. Pánek, D., Orosz, T., and Karban, P. Artap: Robust design optimization framework for engineering applications. arXiv preprint arXiv:1912.11550, 2019.
https://doi.org/10.1109/ICDS47004.2019.8942318

99. Burnett, D., Thorp, J., Richards, D., Gorkovenko, K., and Murray-Rust, D. Digital twins as a resource for design research. In Proceedings of the 8th ACM International Symposium on Pervasive Displays, June 12–14, 2019, Palermo, Italy. ACM, New York, NY, 1–2.
https://doi.org/10.1145/3321335.3329685

100. Cerrone, A., Hochhalter, J. D., Heber, G., and Ingraffea, A. R. On the effects of modeling as-manufactured geometry: toward digital twin. Int. J. Aerosp. Eng.2014(3), 439278.
https://doi.org/10.1155/2014/439278

101. Kuts, V., Modoni, G. E., Otto, T., Sacco, M., Tähemaa, T., Bondarenko, Y., et al.  Synchronizing physical factory and its digital twin through an IioT middleware: a case study. Proc. Estonian Acad. Sci., 2019, 68(4), 364–370.
https://doi.org/10.3176/proc.2019.4.03

102. Vaimann, T., Rassõlkin, A., Kallaste, A., Pomarnacki, R., Belahcen, A., and Hyunh, V. K. Artificial intelligence in monitoring and diagnostics of electrical energy conversion systems. Proceeding of 27th International Workshop on Electric Drives (IWED2020), January 27–30, 2020, Moscow, Russia. IEEE, 2020,9069566.
https://doi.org/10.1109/IWED48848.2020.9069566

103. Zhang, M., Zuo, Y., and Tao, F. Equipment energy consumption management in digital twin shop-floor: a framework and potential applications. In Proceedings of the 2018 IEEE 15th International Conference on Networking, Sensing and Control (ICNSC), March 27–29, 2018, Zhuhai, China, 1–5.
https://doi.org/10.1109/ICNSC.2018.8361272

104. Karanjkar, N., Joglekar, A., Mohanty, S., Prabhu, V., Raghunath, D., and Sundaresan, R. Digital twin for energy optimization in an SMT-PCB assembly line. In Proceedings of the 2018 IEEE International Conference on Internet of Things and Intelligence System (IOTAIS), November 1–3, 2018, Bali, Indonesia, 85–89.
https://doi.org/10.1109/IOTAIS.2018.8600830

105. Poór, P., Kuchtová, N., and Šimon, M. Machinery maintenance as part of facility management. Procedia Eng., 2014, 69, 1276–1280.
https://doi.org/10.1016/j.proeng.2014.03.119

106. Kandukuri, S. T., Senanyaka, J. S. L., Hyunh, V. K., Robbersmyr, K. G., et al. A two-stage fault detection and classification scheme for electrical pitch drives in offshore wind farms using support vector machine. IEEE Trans. Ind. Appl., 2019, 55(5), 5109–5118.
https://doi.org/10.1109/TIA.2019.2924866

107. Orłowska-Kowalska, T., Kowalski, C. T., and Dybkowski, M. Fault-diagnosis and fault-tolerant-control in industrial processesand electrical drives. In Advanced Control of Electrical Drives and Power Electronic Converters. Studies in Systems, Decision and Control, Vol. 75. Springer, Cham, 2017, 101–120.
https://doi.org/10.1007/978-3-319-45735-2_5

108. Kabziński, J. (ed.). Advanced Control of Electrical Drives and Power Electronic Converters. Springer, 2017.
https://doi.org/10.1007/978-3-319-45735-2

109. Vaimann, T. Diagnostics of induction machine rotor faults using analysis of stator signals. PhD thesis, Department of Electrical Engineering, Tallinn University of Technology, 2014.

110. Furtat, I. B. An algorithm to control nonlinear systems in perturbations and measurement noise. Autom. Remote Control, 2018, 79, 1207–1221.
https://doi.org/10.1134/S0005117918070032

111. Margun, A., Furtat, I., Bazylev, D., and Kremlev, A. Disturbance compensation and control algorithm with application for non-linear twin rotor MIMO system. In Mechatronics 2027. Advances in Intelligent Systems and Computing, Vol. 644. Springer, Cham, 2017, 428–435.
https://doi.org/10.1007/978-3-319-65960-2_53

112. Furtat, I. B. and Fradkov, A. L. Robust control of multi-machine power systems with compensation of disturbances. Int. J. Electr. Power Energy Syst., 2015, 73, 584–590.
https://doi.org/10.1016/j.ijepes.2015.05.042

113. Vas, P. Parameter Estimation, Condition Monitoring, and Diagnosis of Electrical Machines. Oxford University Press, 1993.

114. Thorsen, O. V. and Dalva, M. A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Trans. Ind. Appl., 1995, 31(5), 1186–1196.
https://doi.org/10.1109/28.464536

115. Petrov, A., Plokhov, I., Rassõlkin, A., Vaimann, T., Kallaste, A., and Belahcen, A. Adjusted electrical equivalent circuit model of induction motor with broken rotor bars and eccentricity faults. In Proceeding of the 2017 IEEE 11th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), August 29–September 1, 2017, Tinos, Greece, 58–64.
https://doi.org/10.1109/DEMPED.2017.8062334

116. Asad, B., Vaimann, T., Belahcen, A., Kallaste, A., Rassõlkin, A., and Iqbal, M. N. Broken rotor bar fault detection of the grid and inverter-fed induction motor by effective attenuation of the fundamental component, 2019. 
https://digital-library.theiet.org/content/journals/10.1049/iet-epa.2019.0350
https://doi.org/10.1049/iet-epa.2019.0350

117. Asad, B., Vaimann, T., Kallaste, A., Rassõlkin, A., Belahcen, A., and Iqbal, M. N. Improving legibility of motor current spectrum for broken rotor bars fault diagnostics. Electrical, Control and Communication Engineering, 2019, 15(1), 1–8.
https://doi.org/10.2478/ecce-2019-0001

118. Pando-Acedo, J., Rassõlkin, A., Lehikoinen, A., Vaimann, T., Kallaste, A., Romero-Cadaval, E., and Belahcen, A. Hybrid FEA-Simulink modelling of permanent magnet assisted synchronous reluctance motor with unbalanced magnet flux. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED)August 27–30, 2019, Toulouse, France, 174–180.
https://doi.org/10.1109/DEMPED.2019.8864925

119. Kudelina, K., Asad, B., Vaimann, T., Rassõlkin, A., Kallaste, A., and Lukichev, D. V. Main faults and dia­gnostic possibilities of BLDC motors. In Proceedings of the 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), January 27–30, 2020,Moscow, Russia. IEEE, 2020, 1–6.
https://doi.org/10.1109/IWED48848.2020.9069553

120. Lee, K.-B. and Choi, U.-M. Faults and diagnosis systems in power converters. Advanced and Intelligent Control in Power Electronics and Drives. Studies in Computational Intelligence, Vol. 531. Springer, Cham, 2014, 143–178.
https://doi.org/10.1007/978-3-319-03401-0_4

121. Yang, S., Xiang, D., Bryant, A., Mawby, P., Ran, L., and Tavner, P. Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electron., 2010, 25(11), 2734–2752.
https://doi.org/10.1109/TPEL.2010.2049377

122. Ruiming, F., Minling, W., Xinhua, G., Rongyan, S., Pengfei, S., et al. Identifying early defects of wind turbine based on SCADA data and dynamical network marker. Renew. Energ., 2020, 154, 625–635.
https://doi.org/10.1016/j.renene.2020.03.036

123. Kim, H.-C., Kim, M.-H., and Choe, D.-E. Structural health monitoring of towers and blades for floating offshore wind turbines using operational modal analysis and modal properties with numerical-sensor signals. Ocean Eng., 2019, 188, 106226.
https://doi.org/10.1016/j.oceaneng.2019.106226

124. Tao, F., Zhang, M., and Nee, A. Y. C. Digital Twin Driven Smart Manufacturing. Academic Press, 2019.
https://doi.org/10.1016/B978-0-12-817630-6.00010-2

125. Lermer, M. and Reich, C. Creation of digital twins by combining fuzzy rules with artificial neural networks. In Proceedings of the IECON 2019 – 45th Annual Conference of the IEEE Industrial Electronics Society, October 14–17, 2019, Lisbon, Portugal, 5849–5854.
https://doi.org/10.1109/IECON.2019.8926914

126. Kuts, V., Modoni, G. E., Terkaj, W., Tähemaa, T., Sacco, M., and Otto, T. Exploiting factory telemetry to support virtual reality simulation in robotics cell. In Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, June 12–15, 2017, Ugento, Italy. Springer, Cham, 2017, 212–221.
https://doi.org/10.1007/978-3-319-60922-5_16

127. Kuts, V., Sarkans, M., Otto, T., and Tähemaa, T. Collaborative work between human and industrial robot in manufacturing by advanced safety monitoring system. In Proceedings of the 28th DAAAM International Symposium on Intelligent Manufacturing and Automation, November 8–11, 2017, Zadar, Croatia. DAAAM International, Vienna, 2017, 0996–1001.
https://doi.org/10.2507/28th.daaam.proceedings.138

128. Shevtshenko, E., Karaulova, T., Igavens, M., Strods, G., Tandzegolskiene, I., Tutlys, V., et al. Dissemination of engineering education at schools and its adjustment to needs of enterprises. In Proceedings of the 28th DAAAM International Symposium on Intelligent Manufacturing and Automation, November 8–11, 2017, Zadar, Croatia. DAAAM International, Vienna, 2017, 44–53.

129. Sell, R. Remote laboratory portal for robotic and embedded system experiments. International Journal of Online and Biomedical Engineering (iJOE), 2013, 9(S8), 23–26.
https://doi.org/10.3991/ijoe.v9iS8.3370

130. Mark, C. P. and Kamath, S. Review of active space debris removal methods. Space Policy, 2019, 47, 194–206.
https://doi.org/10.1016/j.spacepol.2018.12.005

131. Schildknecht, T., Hugentobler, U., and Verdun, A. Optical observations of space debris with the Zimmerwald 1-meter telescope. Adv. Space Res., 1997, 19(2), 221–228.
https://doi.org/10.1016/S0273-1177(97)00004-5

132. ITMO.NEWS. Watching the skies: Roscosmos installs a new set-up for monitoring space debris. 
https://news.itmo.ru/en/science/cyberphysics/news/6502/

133. ROSCOSMOS. State Space Corporation. 
http://en.roscosmos.ru/

134. Arditti, D. Setting-up a small observatory: from concept to construction. Springer Science & Business Media, New York, NY, 2007.

135. Gomez, E. L. and Fitzgerald, M. T. Robotic telescopes in education. Astronomical Review, 2017, 13(1), 28–68.
https://doi.org/10.1080/21672857.2017.1303264

136. Bresina, J., Drummond, M., Swanson, K., and Edgington, W. Automated management and scheduling of remote automatic telescopes. Optical Astronomy from the Earth and Moon. ASP Conference Series, 1994, 55, 216–233.


Back to Issue