ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Non-linear energy harvesting based power splitting relaying in full-duplex AF and DF relaying networks: system performance analysis; pp. 368–381

Full article in PDF format | 10.3176/proc.2020.4.06

Authors
Tran Tin Phu, Duc-Van Phan, Duy-Hung Ha, Tan N. Nguyen, Minh Tran, Miroslav Voznak

Abstract

Wireless power transfer is considered as a novel solution for energy harvesting in wireless communication networks. In this paper, the system performance of the non-linear energy harvesting based power splitting relaying in the full-duplex relaying sensor network is investigated. We considered the system model network with one source, one destination, and one relay node in both the amplify-and-forward and decode-and-forward modes. The closed-form expressions of the system outage (OP) are analysed and derived for verifying system performance. Then, the correctness of the OP closed-form expression is verified by using the Monte Carlo simulation. Furthermore, the influence of the primary system parameters on the system OP is suggested and investigated. The research results indicated that the simulation curves and the analytical curves overlapped, verifying the correctness of the analytical expressions.


References

1. Bi, S., Ho, C. K., and Zhang, R. Wireless powered communication: oportunities and challenges. IEEE Commun. Mag., 2015, 53(4), 117–125.
https://doi.org/10.1109/MCOM.2015.7081084

2. Niyato, D., Kim, D. I., Maso, M., and Han, Z. Wireless powered communication networks: research directions and technological approaches. IEEE Wireless Commun., 2017, 24(6), 2–11.
https://doi.org/10.1109/MWC.2017.1600116

3. Yu, H., Lee, H., and Jeon, H. What is 5G? Emerging 5G mobile services and network requirements. Sustainability, 2017, 9(10), 1848.
https://doi.org/10.3390/su9101848

4. Salem, A., Hamdi, K. A., and Rabie, K. M. Physical layer security with RF energy harvesting in AF multi-antenna relaying net­works. IEEE Trans. on Commun., 2016, 64(7), 3025–3038. 
https://doi.org/10.1109/TCOMM.2016.2573829

5. Liu, W., Zhou, X., Durrani, S., and Popovski, P. Secure communication with a wireless-powered friendly jammer. IEEE Trans. Wireless Commun., 2016, 15(1), 401–415. 
https://doi.org/10.1109/TWC.2015.2474378

6. Nguyen, B. C., Hoang, T. M., Tran, P. T., and Nguyen,T. N. Outage probability of NOMA system with wireless power transfer at source and full-duplex relay.  AEU-Int. J. Electron. Commun., 2020, 116, March 2020, 152957.
https://doi.org/10.1016/j.aeue.2019.152957

7. Zhou, X., Zhang, R., and Ho, C. K. Wireless information and power transfer: architecture design and rate-energy tradeoff. IEEE Trans. Commun., 2013, 61(11), 4754–4767. 
https://doi.org/10.1109/TCOMM.2013.13.120855

8. Liu, L., Zhang, R., and Chua, K-C. Wireless information transfer with opportunistic energy harvesting. IEEE Trans. Wireless Commun., 2013, 12(1), 288–300. 
https://doi.org/10.1109/TWC.2012.113012.120500

9. Nguyen, T. N., Tran, M., Ha, D-H., Trang, T. T., and Voznak, M. Multi-source in DF cooperative networks with the PSR protocol based full-duplex energy harvesting over a Rayleigh fading channel: performance analysis. Proc. Estonian Acad. Sci., 2019, 68, 264–275.
https://doi.org/10.3176/proc.2019.3.03

10. Medepally, B. and Mehta, N. B. Voluntary energy harvesting relays and selection in cooperative wireless networks. IEEE Trans. Wireless Commun., 2010, 9(11), 3543–3553. 
https://doi.org/10.1109/TWC.2010.091510.100447

11. Zhang, R. and Ho, C. K. MIMO broadcasting for simultaneous wireless information and power transfer. In 2011 IEEE Global Telecommunications Conference  GLOBECOM 2011, 2011. arXiv:1105.4999v3.

12. Son, H. and Clerckx, B. Joint beamforming design for multi-user wireless information and power transfer. IEEE Trans. Wireless Commun., 2014, 13(11), 6397–6409. 
https://doi.org/10.1109/TWC.2014.2349511

13. Xu, J., Liu, L., and Zhang, R. Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Trans. Signal Processing, 2014, 62(18), 4798–4810. 
https://doi.org/10.1109/TSP.2014.2340817

14. Park, J. and Clerckx, B. Joint wireless information and energy transfer in a two-user MIMO interference channel. IEEE Trans. Wireless Commun., 2013, 12(8), 4210–4221. 
https://doi.org/10.1109/TWC.2013.071913.130084

15. Huang, K. and Larsson, E. Simultaneous information and power transfer for broadband wireless systems. IEEE Trans. Signal Processing, 2013, 61(23), 5972–5986. 
https://doi.org/10.1109/TSP.2013.2281026

16. Zhou, X., Zhang, R., and Ho, C. K. Wireless information and power transfer in multiuser OFDM systems. IEEE Trans. Wireless Commun., 2014, 13(4), 2282–2294. 
https://doi.org/10.1109/TWC.2014.030514.131479

17. Nasir, A. A., Zhou, X., Durrani, S., and Kennedy, R. A. Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun., 2013, 12(7), 3622–3636. 
https://doi.org/10.1109/TWC.2013.062413.122042

18. Huang, Y. and Clerckx, B. Joint wireless information and power transfer for an autonomous multiple antenna relay system. IEEE Commun. Lett., 2015, 19(7), 1113–1116. 
https://doi.org/10.1109/LCOMM.2015.2428252

19. Huang, Y. and Clerckx, B. Relaying strategies for wireless-powered MIMO relay networks. IEEE Trans. Wireless Commun., 2016, 15(9), 6033–6047.
https://doi.org/10.1109/TWC.2016.2577581

20. Ju, H. and Zhang, R. Throughput maximization in wireless powered communication networks. IEEE Trans. Wireless Commun., 2014, 13(1), 418–428. 
https://doi.org/10.1109/TWC.2013.112513.130760

21. Lee, H., Lee, K-J., Kim, H., Clerckx, B., and Lee, I. Resource allocation techniques for wireless powered communication networks with energy storage constraint. IEEE Trans. Wireless Commun., 2016, 15(4), 2619–2628. 
https://doi.org/10.1109/TWC.2015.2506561

22. Huang, K., Zhong C., and Zhu, G. Some new research trends in wirelessly powered communications. IEEE Wireless Commun., 2016, 23(2), 19–27. 
https://doi.org/10.1109/MWC.2016.7462481

23. Pflug, H. W., Keyrouz, S., and Visser, H. J. Far-field energy harvesting rectifier analysis. In 2016 IEEE Wireless Power Transfer Conference (WPTC2016)Aveiro, 2016.
https://doi.org/10.1109/WPT.2016.7498764

24. Nguyen, T. N., Tran, M. H., Nguyen, T-L., Ha, D-H., and Voznák, M. Performance analysis of a user selection protocol in co­operative networks with power splitting protocol-based energy harvesting over Nakagami-m/Rayleigh channels. Electronics, 2019, 8(4), 448.
https://doi.org/10.3390/electronics8040448

25. Halima, N. B. and Boujemaa, H. Exact and approximate symbol error probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels. KSII Trans. Internet Inf. Syst., 2018, 12(1), 81–108.
https://doi.org/10.3837/tiis.2018.01.005

26. Tseng, S.-M., Lee, T-L., Ho, Y-C., and Tseng, D-F. Distributed space-time block codes with embedded adaptive AAF/DAF elements and opportunistic listening for multihop power line communication networks. Int. J. Commun. Syst., 2017, 30(1), e2950.
https://doi.org/10.1002/dac.2950

27. Li, Y. and Vucetic, B. On the performance of a simple adaptive relaying protocol for wireless relay networks. In Proceedings of the VTC Spring 2008 IEEE Vehicular Technology Conference, Singapore, 11–14 May 2008, 2400–2405.
https://doi.org/10.1109/VETECS.2008.531

28. Nguyen, T. N., Tran, P. T., and Voznak, M. Power splitting-based energy-harvesting protocol for wireless powered communication networks with a bidirectional relay. Int. J. Commun. Syst., 2018, 31(13).
https://doi.org/10.1002/dac.3721

29. Assimonis, S. D., Daskalakis, S., and Bletsas, A. Sensitive and efficient RF harvesting supply for batteryless backscatter sensor networks. IEEE Trans. Microw. Theory Techn., 2016, 64(4), 1327–1338.
https://doi.org/10.1109/TMTT.2016.2533619

30. Popovic, Z. Far-field low-power wireless powering for unattended sensors. In 2015 IEEE 16th Annual Wireless and Microwave Technology Conference (WAMICON). Cocoa Beach, Fl., 2015, 1–4. 
https://doi.org/10.1109/WAMICON.2015.7120437

31. Nguyen, T. N., Minh, T. H. Q., Tran P. T., and Voznak, M. Adaptive energy harvesting relaying protocol for two-way half duplex system network over Rician fading channels. Wireless Commun. Mobile Comput., 2018, 1–10.
https://doi.org/10.1155/2018/7693016

32. Nguyen, T. N., Tin, P. T., Ha, D. H., Voznak, M., Tran, P. T., Tran, M., and Nguyen, T-L. Hybrid TSR–PSR alternate energy harvesting relay network over Rician fading channels: outage probability and SER analysis. Sensors, 2018,18(11), article No. 3839.
https://doi.org/10.3390/s18113839

33. Nguyen, T N., Minh, T. H. Q., Ha, D-H., Nguyen, T-L., and Voznak, M. Energy harvesting based two-way full-duplex relaying network over Rician fading environment: performance analysis. Proc. Estonian Acad. Sci., 2019, 68, 111–123.
https://doi.org/10.3176/proc.2019.1.11

34. Phan, V-D., Nguyen, T. N., Tran, M., Trang, T. T, Voznak, M., Ha, D-H., and Nguyen, T-L. Power beacon-assisted energy harvesting in a half-duplex communication network under co-channel interference over a Rayleigh fading environment: energy efficiency and outage probability analysis. Energies, 2019, 12(13), 2579.
https://doi.org/10.3390/en12132579

35. Nguyen, T. N., Minh, T. H. Q., Nguyen, T-L., Ha, D-H., and Voznak, M. Multi-source power splitting energy harvesting relaying network in half-duplex system over block Rayleigh fading channel: system performance analysis. Electronics, 2019, 8(1), article No. 67.
https://doi.org/10.3390/electronics8010067

36. Dong, Y., Hossain, M. J., and Cheng, J. Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester. IEEE Commun. Lett., 2016, 20(4), 672–675.
https://doi.org/10.1109/LCOMM.2016.2528260

37. Wang, K., Li, Y., Ye, Y., and Zhang, H. Dynamic power splitting schemes for non-linear EH relaying networks: perfect and imperfect CSI. In 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall). Toronto, ON, 2017, 1–5. 
https://doi.org/10.1109/VTCFall.2017.8287945

38. Gradshteyn, I. S. and Ryzhik, I. M. Table of Integrals, Series, and Products8th ed. (Zwillinger, D. ed.). Elsevier, Academic Press, 2014. 

39. Nguyen, T. N., Tran, P. T., Minh, T. H. Q., Voznak, M., and Sevcik, L. Two-way half duplex decode and forward relaying network with hardware impairment over Rician fading channel: system performance analysis. Elektron. Elektrotech., 2018, 24(2), 74–78.
https://doi.org/10.5755/j01.eie.24.2.20639

40. Ye, Y., Li, Y., Wang, D., Zhou, F., Hu, R. Q., and Zhang, H. Optimal transmission schemes for DF relaying networks using SWIPT. IEEE Trans. Vehicular Technol., 2018, 67(8), 7062–7072.
https://doi.org/10.1109/TVT.2018.2826598

41. Tin, P. T., Hung, D., T, Nguyen, T. N., Duy, T. T.,  and Voznak, M. Secrecy performance enhancement for underlay cognitive radio networks employing cooperative multi-hop transmission with and without presence of hardware impairments. Entropy, 2019, 21(2), article No. 217.
https://doi.org/10.3390/e21020217

42. Nguyen, T. N., Tran, M., Tran, P. T., Tin, P. T., Nguyen, T-L., Ha, D-H., and Voznak, M. On the performance of power splitting energy harvested wireless full-duplex relaying network with imperfect CSI over dissimilar channels. Secur. Commun. Netw.2018, article ID 6036087.
https://doi.org/10.1155/2018/6036087

43. Tin, P. T., Nguyen, T. N., Tran, M., Trang, T. T., and Sevcik, L. Exploiting direct link in two-way half-duplex sensor network over block Rayleigh fading channel: upper bound ergodic capacity and exact SER analysis. Sensors, 2020, 20(4), article No. 1165.
https://doi.org/10.3390/s20041165


Back to Issue