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Abstract. Wireless power transfer is considered as a novel solution for energy harvesting in wireless communication networks. In 

this paper, the system performance of the non­linear energy harvesting based power splitting relaying in the full­duplex relaying 

sensor network is investigated. We considered the system model network with one source, one destination, and one relay node in 

both the amplify­and­forward and decode­and­forward modes. The closed­form expressions of the system outage  (OP) are analysed 

and derived for verifying system performance. Then, the correctness of the OP closed­form expression is verified by using the Monte 

Carlo simulation. Furthermore, the influence of the primary system parameters on the system OP is suggested and investigated. The 

research results indicated that the simulation curves and the analytical curves overlapped, verifying the correctness of the analytical 

expressions. 
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Abbreviations and symbols 
 
AF              Amplify­and­forward 
AWGN       Additive white Gaussian noise 
DF              Decode­and­forward 
EH              Energy harvesting 
FD              Full­duplex 
IT               Information transformation  
NEH           Non­linear energy harvesting 
OP              Outage probability 
PS               Power splitting 
RF              Radiofrequency 
RV              Random variable 
SINR          Signal to interference noise ratio 

SP               Success probability  
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SWIPT       Simultaneous wireless information and power transfer 
ρ                 Power splitting factor, 0 < ρ < 1 
η                 Energy conversion efficiency, 0 < η ≤ 1 
𝑃
𝑡ℎ

              Saturation threshold of the rechargeable power 
𝛾
𝑡ℎ

              Threshold of the system 
𝛤�•�            Incomplete gamma function  
𝜆
𝑆𝑅

             Mean of |ℎ
𝑆𝑅

|2  
𝜆
𝑅𝐷

             Mean of |ℎ
𝑅𝐷

|2  
𝛺
𝑅𝑅

            Variance of |ℎ
𝑅𝑅

|2  
𝛽                 Amplification factor 
𝑃
𝑆
               Transmit power of the source 

𝑇                 Total time of processing 
ψ                Ratio of energy Ps to variance N

0



1. INTRODUCTION 
 

In comparison with other energy harvesting (EH) methods, such as from the sun, heat, wind, motion, etc., 

radiofrequency (RF) EH can be considered as a novel solution because energy can transfer through the air 

without a cable and both energy and information can be carried using the RF signal [1–4]. In wireless 

communications this technique is a comfortable solution for battery­limited applications or under conditions 

that are dangerous for operating devices. For this purpose, a novel technique called simultaneous wireless 

information and power transfer (SWIPT) is proposed based on the fact that the RF signals can transfer 

information and energy simultaneously. The SWIPT technique can help the energy­constrained nodes harvest 

energy from other nodes or the surrounding environment and use this energy to transfer information to other 

nodes [1–10]. Recently SWIPT has attracted significant attention in academia.  

In [6] the fundamental tradeoff between the transporting and the information rate is presented and 

investigated. Improving the efficiency of simultaneous information transmission and energy transferring by 

using some fundamental tradeoffs in designing wireless multiple­input multiple­output (MIMO) systems is 

studied in [11]. In [12] the authors investigate a joint beamforming algorithm for a multiuser wireless 

communication network system and compare these systems with conventional systems. In [13] a multiuser 

multiple­input single­output broadcast SWIPT system is proposed and analysed.  

The interference channel in SWIPT is carefully studied in [14–16]. In [14] a geodesic energy beamforming 

scheme with channel state information (CSI) is proposed to reduce the feedback overhead in the 

communication system. A novel approach for realizing SWIPT in a broadband system with orthogonal 

frequency division multiplexing and transmit beamforming is proposed and investigated in [15]. In [16] the 

optimal design for SWIPT in downlink multiuser orthogonal frequency division multiplexing systems where 

the users harvest energy and decode information using the same signals received from a fixed access point 

is studied. 

A cooperative relaying communication network in both amplify­and­forward (AF) and decode­and­

forward (DF) modes is considered in [17–19]. In that network an energy­constrained relay node receives the 

energy from the source node, and the information is transferred from the source node to the destination with 

the help of a relay. Wireless powered communication and its potential applications and promising research 

directions are studied in [20–24]. Moreover, in [25] the theoretical symbol error probability (SEP) of a 

cooperative relaying system network is derived. In [26] a novel distributed space­time block code (DSTBC) 

scheme in multihop power line communication (PLC) networks is proposed. In [27] a simple adaptive 

relaying protocol (ARP) for general relaying system networks is studied. From this review of literature, we 

can state that the research direction in SWIPT is extremely hot and needs to be developed more and more. 

In SWIPT the rectenna is considered as a critical component of the far­field RF harvesting circuits because 

of the conversion of the input RF signal to DC voltage by the antenna and the rectifier. The non­linearity of 

harvested power as a function of input power is also corroborated by the fact that the conversion efficiency 

in the literature on microwave circuits is always referenced to a specific level of input power [28–30].  

To the best of our knowledge, there are very few recent SWIPT researches that study non­linear RF 

harvesting models. In this paper the system performance analysis of non­linear energy harvesting (NEH) 

based power splitting (PS) relaying in full­duplex (FD) relaying networks is proposed and investigated. In 

this research we considered the system network with one source (S) and one destination (D) node, which 

communicate by helping the intermediate relay (R) node in both AF and DF modes. The closed­form 

expressions of the system outage probability (OP) are analysed and derived for both AF and DF modes. Then, 

the correctness of the analytical OP is verified by using the Monte Carlo simulation. Furthermore, the 

influence of the primary system parameters on the system OP is investigated. The research results indicated 

that the simulation curves and the analytical curves overlapped, verifying the correctness of the analytical 

expressions. Here are the main contributions of this research: 

● NEH based PS relaying in the FD relaying sensor network is presented. 

● The closed form of the system OP in both the AF and the DF mode is derived. 

● The Monte Carlo simulation is conducted to verify the correctness of the results, and the effect of the 

main system parameters on the system OP is analysed. 
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The structure of the rest of this paper is as follows. Section 2 presents the system model, the energy 

harvesting, and information transmission phases. Section 3 presents the OP analysis for deriving the closed 

form of the system OP. Section 4 proposes some numerical results and discussions. Finally, some conclusions 

are drawn in Section 5. 

 

 

2. SYSTEM  MODEL 

 

The NEH based PS relaying in the FD relaying sensor network is proposed in Fig. 1. In addition, the loopback 

interference is considered at R. In this system model, all links are Rayleigh block fading channels.  

The EH and information transformation (IT) for the proposed model system are illustrated in Fig. 2. The 

time of information transmission and energy transferring is denoted as T. In the interval T, the relay R harvests 

energy ρPs from the source node S, and the source uses the energy (1 – ρ)Ps for information transmission to 

the relay R and the destination D (here ρ is the power splitting factor) [31–34]. 

 

 
2.1. Non­linear  energy  harvesting  phase 

 
In the EH phase, the received signal at the relay can be given as 

In most literature, the total harvested energy at the relay is formulated as a linear model [31–34]. In this 

paper, the non­linear transformation model proposed in reference [35–37] is used. The average transmit power 

at the relay can be obtained as 

where Ptℎ is the saturation threshold of the rechargeable power of the hardware circuit. 

 

 

2.2. Information  transmission  phase 

 

The received signal at the relay R in the information transmission phase is 
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Fig. 1.  System model. S denotes source, D is the destination and 

R stands for relay; hSR and hRD are channel coefficients, and hRR is 

the loopback interference coefficient. 
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             Fig. 2. Energy harvesting and information processing. 

r s SR s r RR r ry P h x P h x n



In this phase, the received signal at the destination can be formulated as 

where hRD is the channel coefficient and nd is the zero mean AWGN with variance N
0
. 

 

2.2.1. AF  mode 
 

In the AF protocol, the relay amplification factor 𝛽 is set as 

Please note that for convenience in this analysis the residual self­interference at the relay nodes is modelled 

as AWGN with zero mean and variance ΩRR [33,38]. 

Hence, the amplification factor can be rewritten as 

By substituting (5) into (4) and then combining with (3), we have that 

The end to end signal to the interference noise ratio (SINR) from (7) can be obtained as 

After doing some algebra, equation (8) can be reformulated as 

 

T. T. Phu et al.: Non-linear energy harvesting based PS relaying 371

rx rx RRh

d r RD r dy P h x n

r

r SR s RR r

x
y h P h P N

SR s RR rh P P N

= + = + + +

= + + +

AF

r s SR RD

r RD RR r RD

r s SR RD

r RD RR r RD

signal
SINR

P P h h
P h P h N N

P P h h
NP

interference noise noise

h P h N

s SR RD
AF

SR s
r RD RR RR

r

P h h
SINR

h P N
P h N

P

 .



2.2.2. DF  mode 
 
In the DF mode, the SINR at the relay R from (3) can be given as 

From (4), the SINR at the destination D can be expressed as 

3. SYSTEM  PERFORMANCE 

 

3.1. AF  mode 

 

In the AF mode the OP can be defined as 

where SPAF is the success probability (SP), which can be given as follows: 

where 𝛾th is the threshold of the system. 

By substituting (3) into (12), equation (12) can be rewritten as 

where 
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We denote X = |hSR|2, Y = |hRD|2 and a
1
 = ηρ(1 – ρ) Ps,b1

 = η2ρ2PsΩRR, c
1 

= (1– ρ) N
0 

+ 𝜂ρN
0
ΩRR, d = 

so equation (14) can be reformulated as
 

Consider  

   

(16)

 

 

 

 

where λRD is the mean value of the random variable (RV) |hRD|2. 

If we choose the condition of the threshold a
1
 > γth b

1 
↔ γth<       then by substituting (16) into (15) P

1
 

can be obtained as follows:
 

 

Substituting (18) into (17), we have 

By applying equation (3.381,3) from the table of integrals [38], equation (20) can finally be obtained as   
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)

                              (18)
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,

t

x

x e t dt
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 b1



We denote that a
2 

= ηρ(1– ρ)PsPth,b2
 = η2ρ2P2

thQRR, c
2
 = (1– ρ)PsN0

,e
2 

= ηρPthN0
QRR. Hence, equation (22) 

can be reformulated as 

Consider  

By substituting (24) into (23), P
2
 can be obtained as 
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By substituting (21) and (28) into (13), the SP of the system can be obtained as 

 

Finally, the OP of the system in the AF mode can be claimed as 

3.2. DF  mode 

 

From equations (10) and (11), the end to end SINR of the DF mode can be given as 
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      (27)

      (28)

      (29)

      (30)

 

By substituting (27) and (2)6 and applying equation (3.381,3) from the table of integrals [38], P
2 

can 

finally be expressed as

Then we apply the Taylor series as follows:

      (31)



The SP in the DF mode can be expressed as 

We consider the term of equation (32) by substituting equation (2) and by denoting as above in the AF   

where  

In the AF mode we selected the condition                             . Hence, the condition (1– ρ)Ps– ηρPsγthΩRR  > 0 

is satisfied. 

If 
                                                                                           

 

 

the inequality                                                     will not hold. So, in this case, P
3
 = 0.  
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As it is difficult to find the closed­form expression for P
3
 due to the integral                    exp               for  

any value of v
1
 and, v

2
     0, we will employ the Gaussian–Chebyshev quadrature. 

 

First, we have to change the variable from equation (35) by denoting                                     . Equation (35) 

can be rewritten as

 

 

                                                                                                                                                                                             

 

where  

 

Apply the Gaussian–Chebyshev quadrature from [39–43]. Then equation (36) can be approximated as 

where N is a parameter that determines the tradeoff between complexity and accuracy for the Gaussian–

Chebyshev quadrature based approximation and                             and  

From equation (33), P
4
 is defined as 

 

 

where . 
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4. NUMERICAL  RESULTS  AND  DISCUSSION 

 

In this section, we present numerical results to demonstrate the system performance of the system network 

proposed in the previous section. The correctness of the analytical analysis in the previous section is verified 

by the Monte Carlo simulation as in [31–35].  

In Fig. 3 we depict the OP as a function of ψ using η = 0.8, γth 
= 0.25 and ρ = 0.2 and 0.5. Here we vary 

ψ from –15 DB to 20 dB for validating the correctness of the proposed system. We can observe in Fig. 3 that 

the system OP shows a massive decrease with the rising of the ψ from –5 dB to 10 dB. At the beginning and 

at the last values of the ψ, the system OP has a slight fall. Figure 4 illustrates the system OP versus the Pth 

while the Pth increases from 0 dB to 15 dB. In Fig. 4 we set the primary system parameters as η = 0.8, γth 
= 

0.25, ρ = 0.5, and ψ = 5 and 10 dB. As shown in Fig. 4, the system OP decreases significantly with the rising 

of the power Pth. It can be observed that the higher the Pth in the system, the lower the system OP may become.  

From Figs 3 and 4 we can see that the analytical curves and the simulation curves duplicate each other 

for validating the analytical analysis in the above section. The system OP in case ρ = 0.2 with a high SNR in 

Fig. 3 for the AF and DF modes can reach the value of 0.55, and the system OP with ρ = 0.5 with the AF and 

DF modes can reach the value of 0.3. In the same way, when the power Pth rises to higher values, the system 

OP in the case ψ = 5 can reach the value of 0.4 with the AF mode and 0.2 with the DF mode. However, in 

the ψ = 10 case, the system OP can obtain the value of 0.2 for the AF mode and 0.1 for the DF mode. 

Next, in Fig. 5, we depict the influence of the power splitting factor ρ on the system OP with ψ = 5 dB, 

γ
th 

= 0.15, and η = 0.5 and 0.7. In Fig. 5, ρ increases from 0 to 1, and we considered both AF and DF modes. 

As shown in Fig. 5, the system OP decreases considerably when ρ rises from 0 to 0.6, and after reaching the 

optimal value, the system OP shows an immense increase when ρ rises to 1. The optimal value of the system 

OP can be obtained with ρ from 0.5 to 0.7.  
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Fig. 3. Outage probability (OP) versus the energy Ps to variance 

N
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Fig. 4. Outage probability (OP) versus the saturation threshold 

of the rechargeable power Pth. 
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  AF mode with ρ = 0.2 

  DF mode with ρ = 0.2 

  AF mode with ρ = 0.5 

  DF mode with ρ = 0.5 

  Monte Carlo simulation

  AF mode with ψ = 5 dB 

  DF mode with ψ = 5 dB 

  AF mode with ψ = 10 dB 

  DF mode with ψ = 10 dB 

  Monte Carlo simulation

OP of system versus ψ with η = 0.8 and γ
th

 = 0.25 OP of system versus P
th

 with η = 0.8, ρ = 0.5, and γ
th

 = 0.25



Furthermore, we investigated the system OP as the function of the ΩRR as shown in Fig. 6. In Fig. 6 the 

ΩRR increases from –10 dB to 2 dB, and the main system parameters are set as ψ = 5 dB, γ
th 

= 0.25, η = 0.8, 

ρ = 0.5, and N
0 
= 1 dB and 5 dB. The results demonstrate that with the rising of the ΩRR the system OP of the 

AF mode increases significantly, but that of the DF mode shows just a slight increase. Consequently, with a 

rising ΩRR the system performance of the DF mode is better than of the AF mode. Finally, as illustrated in 

Figs 5 and 6, the simulation results agree well with the analytical results.  

Figure 7 examines the impact of the N
0
 on the system OP with η = 0.8, γth = 0.25, η = 0.8, ρ = 0.25, and 

ΩRR 
= 1 dB and 5 dB. As shown in Fig. 7, the system OP of both AF and DF modes has a considerable increase 

with the continuous rising of N
0
 from –10 dB to 5 dB. This is due to the fact that the more energy is used for 

the harvesting phase, the higher the OP in the proposed system. 

The system OP as the function of the energy efficiency η is illustrated in Fig. 8. Here the energy efficiency 

η varies from 0 to 1, and the main system parameters are set as ψ = Pth = 5 dB, ρ = 0.5, and γth 
= 0.15 and 

0.25. In contrast to Fig. 7, the system OP has a colossal decrease with the rising of the energy efficiency η. 

This suggests that the more efficient energy use, the lower system OP can be obtained and the better system 
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performance is achieved. As shown in Figs 7 and 8, the simulation curves overlap the analytical curves and 

thus verify the analytical expressions in the previous section. 

 

5. CONCLUSIONS 

 

In this paper, the system performance analysis of NEH based PS relaying in the FD relaying network is proposed 

and investigated. The closed­form expressions of the system OP are analysed and derived for both AF and DF 

modes. Then, the correctness of the analytical OP is verified by using the Monte Carlo simulation. Furthermore, 

the influence of the primary system parameters on the system OP is investigated. The research results showed 

that the simulation curves and the analytical curves overlapped, verifying the correctness of the analytical 

expressions. This paper can be considered as a novel recommendation for EH communication relaying networks. 
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