ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A case study on the spatial variability of strength in a SFRSCC slab and its correlation with fibre orientation; pp. 298–310

Full article in PDF format | 10.3176/proc.2020.4.03

Authors
Dmitri Kartofelev, Oksana Goidyk, Heiko Herrmann

Abstract

This paper presents the results of an experimental investigation into the effects of the fibre orientation and the concrete casting method on the flexural strength and fracture toughness of steel fibre reinforced self-compacting concrete (SFRSCC). A destructive four-point bending testing is used to measure the flexural strength at the main cracking, the accepted mean post-cracking loading, and the energy absorption capacity (toughness) of the concrete. It is shown that a favourable fibre orientation increases flexural strength up to 25%, the accepted mean post-cracking loading up to 65%, and the toughness up to 65% for the specific concrete mixture and concrete beams used. The presented results and analysis demonstrate the importance of the spatial fibre orientation and distribution on the final strength and durability of hardened concrete. The main findings and conclusions of this paper can also be extended to other fibre reinforced composite materials.


References

1. Brandt, A. M. Fibre reinforced cement-based (FRC) composites after over 40 years of development in building and civil engineering. Compos. Struct., 2008, 86(1–3), 3–9.
https://doi.org/10.1016/j.compstruct.2008.03.006

2. Błaszczyński, T. and Przybylska-Fałek, M. Steel fibre reinforced concrete as a structural material. Procedia Eng., 2015, 122, 282–289.
https://doi.org/10.1016/j.proeng.2015.10.037

3. Naaman, A. E. High performance fiber reinforced cement composites: classification and applications. In CBM-CI international workshop, Karachi, Pakistan, 2007, 389–401.

4. Di Prisco, M., Plizzari, G., and Vandewalle, L. Fibre reinforced concrete: new design perspectives. Mater. Struct., 2009, 42(9), 1261–1281.
https://doi.org/10.1617/s11527-009-9529-4

5. Domone, P. L. Self-compacting concrete: an analysis of 11 years of case studies. Cem. Concr. Compos., 2006, 28(2), 197–208.
https://doi.org/10.1016/j.cemconcomp.2005.10.003

6. Vicente, M. A., Gonzalez, D. C., and Mínguez, J. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestr. Test. Eval., 2014, 29(2), 164–182.
https://doi.org/10.1080/10589759.2014.914204

7. Laranjeira, F., Aguado, A., Molins, C., Grunewald, S., Walraven, J., and Cavalaro, S. H. P. Framework to predict the orientation of fibers in FRC: a novel philosophy. Cem. Concr. Res., 2012, 42(6), 752–768.
https://doi.org/10.1016/j.cemconres.2012.02.013

8. Vandewalle, L., Heirman, G., and Van Rickstal, F. Fibre orientation in self-compacting fibre reinforced concrete. In Proc. of the 7th Int. RILEM Symp. on Fibre Reinforced Concrete: Design and Applications (BEFIB2008). 2008, 719–728.

9. Zerbino, R., Tobes, J. M., Bossio, M. E., and Giaccio, G. On the orientation of fibres in structural members fabricated with self compacting fibre reinforced concrete. Cem. Concr. Compos., 2012, 34(2), 191–200.
https://doi.org/10.1016/j.cemconcomp.2011.09.005

10. Michels, J. and Gams, M. Preliminary study on the influence of fibre orientation in fibre reinforced mortars. Gradevinar, 2016, 68(8), 645–655.

11. Mínguez, J., González, D. C., and Vicente, M. A. Fiber geometrical parameters of fiber-reinforced high strength concrete and their influence on the residual post-peak flexural tensile strength. Constr. Build. Mater., 2018, 168, 906–922.
https://doi.org/10.1016/j.conbuildmat.2018.02.095

12. González, D. C., Minguez, J., Vicente, M. A., Cambronero, F., and Aragón, G. Study of the effect of the fibers’ orientation on the post-cracking behavior of steel fiber reinforced concrete from wedge-splitting tests and computed tomography scanning. Constr. Build. Mater., 2018, 192, 110–122.
https://doi.org/10.1016/j.conbuildmat.2018.10.104

13. Eik, M., Puttonen, J., and Herrmann, H. An orthotropic material model for steel fibre reinforced concrete based on the orientation distribution of fibres. Compos. Struct., 2015, 121, 324–336.
https://doi.org/10.1016/j.compstruct.2014.11.018

14. Eik, M., Puttonen, J., and Herrmann, H. The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct., 2016, 148, 12–18.
https://doi.org/10.1016/j.compstruct.2016.03.046

15. Herrmann, H. An Improved Constitutive Model for Short Fibre Reinforced Cementitious Composites (SFRC) Based on the Orientation Tensor. In Generalized Continua as Models for Classical and Advanced Materials (Altenbach, H. and Forest, S., eds), Springer International Publishing, Cham, 2016, 213–227.
https://doi.org/10.1007/978-3-319-31721-2_10

16. Laranjeira, F., Grunewald, S., Walraven, J., Blom, C., Molins, C., and Aguado, A. Characterization of the orientation profile of steel fiber reinforced concrete. Mater. Struct., 2011, 44(6), 1093–1111.
https://doi.org/10.1617/s11527-010-9686-5

17. Herrmann, H. and Lees, A. On the influence of the rheological boundary conditions on the fibre orientations in the production of steel fibre reinforced concrete elements. Proc. Estonian Acad.  Sci., 2016, 65(4), 408–413.
https://doi.org/10.3176/proc.2016.4.08

18. Martinie, L. and Roussel, N. Simple tools for fiber orientation prediction in industrial practice. Cem. Concr. Res., 2011, 41(10), 993–1000.
https://doi.org/10.1016/j.cemconres.2011.05.008

19. Torrijos, M. C., Barragán, B. E., and Zerbino, R. L. Placing conditions, mesostructural characteristics and post-cracking re- sponse of fibre reinforced self-compacting concretes. Constr. Build. Mater., 2010, 24(6), 1078–1085.
https://doi.org/10.1016/j.conbuildmat.2009.11.008

20. Dupont, D. and Vandewalle, L. Distribution of steel fibres in rectangular sections. Cem. Concr. Compos., 2005, 27(3), 391–398.
https://doi.org/10.1016/j.cemconcomp.2004.03.005

21. Zhou, B. and Uchida, Y. Influence of flowability, casting time and formwork geometry on fiber orientation and mechanical properties of  UHPFRC. Cem. Concr. Res., 2017, 95, 164–177.
https://doi.org/10.1016/j.cemconres.2017.02.017

22. Pajak, M. and Ponikiewski, T. Flexural behavior of self-compacting concrete reinforced with different types of steel fibers. Constr. Build. Mater., 2013, 47, 397–408.
https://doi.org/10.1016/j.conbuildmat.2013.05.072

23. Rizzuti, L. and Bencardino, F. Effects of fibre volume fraction on the compressive and flexural experimental behaviour of  SFRC. Contemp. Eng. Sci., 2014, 7(8), 379–390.
https://doi.org/10.12988/ces.2014.4218

24. Liu, R. and Liu, Y. Steel fiber reinforced concrete and its application performance. Int. J. Multidiscip. Res. Dev., 2016, 3(6), 341–343.

25. Alberti, M. G., Enfedaque, A., and Gálvez, J. On the mechanical properties and fracture behavior of polyolefin fiber reinforced self-compacting concrete. Constr. Build. Mater., 2014, 55, 274–288.
https://doi.org/10.1016/j.conbuildmat.2014.01.024

26. Stahli, P. and Van Mier, J. G. M. Manufacturing, fibre anisotropy and fracture of hybrid fibre concrete. Eng. Fract. Mech., 2007, 74(1–2), 223–242.
https://doi.org/10.1016/j.engfracmech.2006.01.028

27. Kim, D. J., Park, S. H., Ryu, G. S., and Koh, K. T. Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Constr. Build. Mater., 2011, 25(11), 4144–4155.
https://doi.org/10.1016/j.conbuildmat.2011.04.051

28. Vicente, M. A., Mínguez, J., and González, D. C. Computed tomography scanning of the internal microstructure, crack mechanisms, and structural behavior of fiber-reinforced concrete under static and cyclic bending tests. Int. J. Fatigue, 2019, 121, 9–19.
https://doi.org/10.1016/j.ijfatigue.2018.11.023

29. Kang, S.-T. and Kim, J.-K. Numerical simulation of the variation of fiber orientation distribution during flow molding of ultra high performance cementitious composites (UHPCC). Cem. Concr. Compos., 2012, 34(2), 208–217.
https://doi.org/10.1016/j.cemconcomp.2011.09.015

30. Svec, O., Skocek, J., Stang, H., Olesen, J. F., and Poulsen, P. N. Flow simulation of fiber reinforced self compacting concrete using lattice Boltzmann method. In Dissemination. 8th International Congress on the Chemistry of Cement, Madrid, Spain, July 3-8, 2011.

31. The OpenFOAM Foundation Ltd, 2020. OpenFOAM. 
https://openfoam.org/

32. Herrmann, H., Goidyk, O., Naar, H., Tuisk, T., and Braunbrück, A. The influence of fibre orientation in self-compacting concrete on 4-point bending strength. Proc. Estonian Acad. Sci., 2019, 68(3).
https://doi.org/10.3176/proc.2019.3.12

33. Herrmann, H., Boris, R., Goidyk, O., and Braunbrück, A. Variation of bending strength of fiber reinforced concrete beams due to fiber distribution and orientation and analysis of microstructure. IOP Conf. Ser.: Mater. Sci. Engineering, 2019, 660, 012059.
https://doi.org/10.1088/1757-899X/660/1/012059

34. Boulekbache, B., Hamrat, M., Chemrouk, M., and Amziane, S. Flowability of fibre-reinforced concrete and its effect on the mechanical properties of the material. Constr. Build. Mater., 2010, 24(9), 1664–1671.
https://doi.org/10.1016/j.conbuildmat.2010.02.025

35. Herrmann, H., Goidyk, O., and Braunbrück, A. Influence of the flow of self-compacting steel fiber reinforced concrete on the fiber orientations, a report on work in progress. In Short Fibre Reinforced Cementitious Composites and Ceramics (Herrmann, H. and Schnell, J., eds). Springer, 2019, 97–110.
https://doi.org/10.1007/978-3-030-00868-0_7

36. Severstal Metiz. Hendix prime 75/52 – hooked ends fiber. 
http://www.severstalmetiz.ru


Back to Issue