ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Popov form and the explicit equations of inverse systems; pp. 342–355

Full article in PDF format | https://doi.org/10.3176/proc.2018.4.04

Authors
Zbigniew Bartosiewicz, Ülle Kotta, Ewa Pawłuszewicz, Maris Tõnso, Małgorzata Wyrwas

Abstract

The paper addresses the invertibility problem for discrete-time nonlinear control systems, described by the input–output equations. The necessary and sufficient conditions for the existence of left and right inverse systems are given. The explicit equations of inverse systems are found by transforming the system equations into the strong Popov form with respect to inputs. The results are obtained under the assumption that the equations are transformable into the strong Popov form using linear equivalence transformations over the field of meromorphic functions.


References

 

1. Bartosiewicz, Z., Belikov, J., Kotta, Ü., Tõnso, M., and Wyrwas, M. On the transformation of a nonlinear discrete-time input–output system into the strong row-reduced form. Proc. Estonian Acad. Sci., 2016, 65, 220–236.
https://doi.org/10.3176/proc.2016.3.02

2. Bartosiewicz, Z., Kotta, Ü., Pawłuszewicz, E., Tõnso, M., and Wyrwas, M. The strong Popov form of nonlinear input–output equations. Proc. Estonian Acad. Sci., 2018, 67, 193–206.
https://doi.org/10.3176/proc.2018.3.01

3. Beckermann, B., Cheng, H., and Labahn, G. Fraction-free row reduction of matrices of Ore polynomials. J. Symb. Comput., 2006, 41, 513–543.
https://doi.org/10.1016/j.jsc.2005.10.002

4. Cheng, H. Algorithms for Normal Forms of Matrices of Polynomials and Ore Polynomials. PhD thesis, University of Waterloo, Ontario, Canada, 2003.

5. Grizzle, J. W. A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim., 1993, 31, 1026–1044.
https://doi.org/10.1137/0331046

6. Halás, M. An algebraic framework generalizing the concept of transfer functions to nonlinear systems. Automatica, 2008, 44, 1181–1190.
https://doi.org/10.1016/j.automatica.2007.09.008

7. Kotta,Ü. Inversion algorithm for recursive nonlinear systems. Proc. Estonian Acad. Sci. Phys. Math., 1998, 47, 3–18.

8. Kotta, Ü. Inversion Method in the Discrete-Time Nonlinear Control Systems Synthesis Problems. Lecture Notes in Control and Information Science, Vol. 205. Springer-Verlag, London, 1995.

9. Kotta, Ü., Bartosiewicz, Z., Nõmm, S., and Pawłuszewicz, E. Linear input-output equivalence and row reducedness of discretetime nonlinear systems. IEEE Trans. Autom. Control, 2011, 56, 1421–1426.
https://doi.org/10.1109/TAC.2011.2112430

10. Kotta, Ü. and Tõnso, M. Realization of discrete-time nonlinear input–output equations: polynomial approach. Automatica, 2012, 48, 255–262.
https://doi.org/10.1016/j.automatica.2011.07.010

11. Middeke, J. A Computational View on Normal Forms of Matrices of Ore Polynomials. PhD thesis, Johannes Kepler University, Linz, 2011.

 


Back to Issue