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Abstract. The paper addresses the invertibility problem for discrete-time nonlinear control systems, described by the input–output
equations. The necessary and sufficient conditions for the existence of left and right inverse systems are given. The explicit
equations of inverse systems are found by transforming the system equations into the strong Popov form with respect to inputs. The
results are obtained under the assumption that the equations are transformable into the strong Popov form using linear equivalence
transformations over the field of meromorphic functions.
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1. INTRODUCTION

In [7] the problem of right inversion is addressed for nonlinear control systems, described by the set of input–
output (i/o) difference equations. The solution of the problem, that is necessary and sufficient conditions of
right invertibility, is given based on the inversion algorithm (IA), extended for this class of systems. The
IA is traditionally expressed in a form involving the implicit function theorem (IFT). However, in [7] the
IA is presented in terms of differential one-forms, exactly like in [5] for nonlinear systems, described by
the state equations. Therefore, the algorithm does not use the IFT. This form of the IA is certainly efficient
for checking invertibility. To find the explicit equations of the right inverse, one has to integrate the set of
one-forms, obtained at the last step of the IA, which may be a difficult task.

In this paper an alternative approach is suggested, based on the strong Popov form with respect to the
control variables of the set of i/o equations. One can easily find the explicit equations of the inverse system
when the set of original equations will be transformed into the strong Popov form with respect to the control
variable. Note that our results are obtained under the assumption that the equations are transformable into
the strong Popov form using linear equivalence transformations, see [9]. Our results address also the left
inversion problem, not studied so far for this class of systems to the authors’ knowledge. The new approach
is computationally more efficient and transparent, though both approaches result, in principle, in the same
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equations of the inverse system1. As shown via the example, our results agree with those developed for
nonlinear systems, described in terms of the state equations. However, our results are more general since
not all nonlinear i/o equations are realizable in the state space form. According to our knowledge, the
approach is also new for linear systems.

2. PRELIMINARIES

2.1. I/o equations

Consider a discrete-time multi-input multi-output nonlinear system, described by the explicit set of higher-
order difference equations, relating the inputs uk, k = 1, . . . ,m, the outputs yi, i= 1, . . . , p, and a finite number
of their time shifts:

yi(t +ni) =ϕi

(
y j(t), . . . ,y j(t +ni j),uι(t), . . . ,uι(t + siι)

)
, i = 1, . . . , p, (1)

where j = 1, . . . , p, ι = 1, . . . ,m, and ϕi are real meromorphic functions. The word ‘explicit’ means that
the variable yi(t +ni) does not appear on the right-hand side of the ith equation, i.e. nii < ni. It is assumed
that system (1) is strictly causal, i.e. siι < ni. The functions ϕi are defined on an open and dense subset of
R(n+1)(p+m), whereas n = maxni.

Definition 1. The set of i/o equations (1) is said to be in the strong Popov form with respect to the output if
(a) n1 6 n2 6 · · ·6 np;
(b) for all ϕi, i = 1, . . . , p the following conditions hold:

(i) nik < ni if k 6 i;
(ii) nik 6 ni if k > i;

(iii) nki < ni if k ̸= i.

Compared with the definition of the strong Popov form for implicit equations in [2], we have made in
Definition 1 technical simplification ji = i for the explicit equation (1). With this additional assumption
condition (v) in the strong Popov form (see [2]) is always satisfied. This assumption allows us to avoid
double indices and does not bring along any restrictions since this is always doable by renumbering the
output coordinates2, see also Remark 3.

Assumption 1. System (1) is assumed to be in the strong Popov form with respect to output.

We associate a multiplicative set SΣ with system (1). If (1) involves any denominators, then these
denominators have to be included in SΣ together with their shifts and powers. The typically infinite set SΣ
can be generated by a finite generator set S0

Σ. The set S0
Σ generates SΣ if each element of SΣ can be obtained

from a finite number of elements of S0
Σ by applying a finite number of multiplications and backward and

forward shifts to these elements. If (1) does not include any denominators, then we set SΣ = {1} and only
in this case SΣ is a finite set (i.e. SΣ = S0

Σ).
Hereinafter we use the notation ζ for a variable ζ (t), ζ [k] for its k-step time shift ζ (t+k), k ∈Z. In such

notation (1) takes the form

Σ : y[ni]
i = ϕi

(
y j, . . . ,y

[ni j]
j ,uι , . . . ,u

[siι ]
ι

)
, i = 1, . . . , p, (2)

where ι = 1, . . . ,m and j = 1, . . . p.

1 It has to be mentioned that both the inversion algorithm and transformation of equations into the strong Popov form allow
some freedom in their choices, not affecting the invertibility property but possibly the inverse system equations if m ̸= p.

2 Note that renumbering the output coordinates is not a row operation on globally linearized system equations.
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We also consider the equations in the form

Σu : u[σk]
k = χk

(
uι , . . . ,u

[σkι ]
ι ,y j, . . . ,y

[υk j]
j

)
, k = 1, . . . ,µ, (3)

where ι = 1, . . . ,m, j = 1, . . . , p, and µ = min(m, p). Together with Σu the multiplicative set SΣu is consid-
ered.

Definition 2. I/o equations (3) are said to be in the strong Popov form with respect to the input if
(a) σ1 6 σ2 6 · · ·6 σµ ;
(b) for all χk, k = 1, . . . ,µ the following conditions hold:

(i) σkℓ < σk if ℓ6 k;
(ii) σkℓ 6 σk if ℓ > k;

(iii) σℓk < σk if ℓ ̸= k.

In Definition 2, like in Definition 1, we have made a technical simplification for the explicit equations
that in the kth equation of Σu the variable uk appears with the highest shift.

With system Σ, described by equations (2), we associate a vector function Φ := [ϕ̃1, . . . , ϕ̃p]
T, where

ϕ̃i := y[ni]
i − ϕi(·). The system Σ defines the inversive difference field QΣ with the shift operator δΣ. In

particular, the shift of y[ni−1]
i is defined by the right-hand side of equation (2), see more in [2]3. Each

element of QΣ is the image of a meromorphic function under the map eΣ. Basically the map eΣ allows us
to exclude (or include) the zeros, defined by equations (2), from (into) the elements of the field QΣ, and
in this way to find the simplest representatives of the functions in QΣ. See [2] for a precise definition and
Example 1 below.

2.2. Non-commutative polynomials

The field QΣ and the shift operator δΣ induce the ring of non-commutative polynomials in a variable Z over
QΣ, denoted by QΣ[Z;δΣ]. The multiplication is defined by the linear extension of the following rules:

Z ·a := (δΣa)Z and a ·Z := aZ,

where a ∈ QΣ and δΣa means δΣ evaluated at a (so for example (aZµ) · (bZν) = a(δ µ
Σ b)Zµ+ν ).

Let QΣ[Z,δΣ]
p×q be the set of p×q-dimensional matrices, whose entries are polynomials in QΣ[Z,δΣ].

Let us denote the ith row of the matrix W ∈ QΣ[Z,δΣ]
p×q by wi•. For the non-zero row wi• we define its

degree degwi• ≡ σi as the exponent of the highest power in Z present in wi• for i = 1, . . . , p. If wi• ≡ 0, we
define σi =−∞. The vector of the row degrees is denoted by σ := [σ1, . . . ,σp]. The degree of the matrix W
is defined as degW := max{σ1, . . . ,σp}. Let N = degW , e = [1, . . . ,1], and M = [m1, . . . ,mp] := N · e−σ .
By ZM we denote the diagonal p× p matrix with the diagonal elements Zm1 , . . . ,Zmp .

Definition 3. The matrix L(W ) such that ZMW = L(W )ZN + lower degree terms is called the leading row
coefficient matrix of W.

Definition 4. [9,11] A polynomial matrix W ∈ QΣ[Z,δΣ]
p×q with non-zero rows is called row-reduced if its

leading row coefficient matrix L(W ) has full row rank4 over the field QΣ. If W contains zero rows, then W
is called row-reduced if its submatrix consisting of non-zero rows is row-reduced.

Definition 5. [11] Matrix W ∈ QΣ[Z,δΣ]
p×q is in the Popov form if W is row-reduced with the rows sorted

with respect to their degrees (σ1 6 · · ·6 σp) and for all non-zero rows wi• there is a column index ji (called
the pivot index) such that

3 In [2] the notations QΦ
S and δΦ were used respectively for QΣ and δΣ.

4 The matrix W ∈ QΣ[Z,δΣ]
p×q is said to have full row rank if rankW = min(p,q).



Z. Bartosiewicz et al.: Popov form and inverse systems 345

(i) wi ji is monic;
(ii) degwik < degwi ji if k < ji;

(iii) degwik 6 degwi ji if k > ji;
(iv) degwk ji < degwi ji if k ̸= i;
(v) if degwi ji = degwk jk and i < k, then ji < jk (if the degrees of the rows are equal, then the pivot indices

are increasing).

Proposition 1. [11] For any matrix W ∈ QΣ[Z,δΣ]
p×q there exists a unimodular matrix U ∈ QΣ[Z,δΣ]

p×p

such that U ·W is in the Popov form.

2.3. Linearized i/o equations

Our goal is to represent system (2) in terms of polynomials from QΣ[Z;δΣ]. For that purpose we apply the
differential operation d to equations (2) to obtain

dy[ni]
i −

p

∑
j=1

n

∑
α=0

∂ϕi

∂y[α]
j

dy[α]
j −

m

∑
ι=1

n

∑
β=0

∂ϕi

∂u[β ]ι
du[β ]ι = 0 (4)

for i = 1, . . . , p. The polynomial variable Z is interpreted as the shift operator. Defining Zαdy j := dy[α]
j and

Zβ duι := du[β ]ι allows us to rewrite (4) as

P(Z)dy+Q(Z)du = 0, (5)

where P∈QΣ[Z;δΣ]
p×p and Q∈QΣ[Z;δΣ]

p×m are polynomial matrices, whose elements pi j,qiι ∈QΣ[Z;δΣ]
are

pi j = δi jZni −
n

∑
α=0

∂ϕi

∂y[α]
j

Zα , qiι =−
n

∑
β=0

∂ϕi

∂u[β ]ι
Zβ , (6)

δi j is the Kronecker symbol, and dy = [dy1, . . . ,dyp]
T, du = [du1, . . . ,dum]

T. Equation (5) describes the
(globally) linearized system, associated with equations (2). For P and Q we define the equivalence classes
P̄ := eΣ(P), where eΣ(P)i j := eΣ(pi j), Q̄ := eΣ(Q), where eΣ(Q)iι := eΣ(qiι). The following example
explains the action of operator eΣ.

Example 1. Consider the system taken from [9]:

y[2]1 +
y[2]2 y[1]3

y1
−

y[2]2 u3

y1
−u1 = 0, y[3]1 u1 + y[1]2 −u[1]1 u1 −u2 = 0, y[1]3 −u3 = 0. (7)

By (5) and (6) the matrix

P =

Z2 − y[2]2 (y[1]3 −u3)

y2
1

y[1]3 −u3
y1

Z2 y[2]2
y1

Z

u1Z3 Z 0
0 0 Z

 .

Next we define the equivalence class P̄. To find one of the simplest representatives of the class, we take into
account system equations (7) in matrix P and obtain

P̂ :=

 Z2 0 y[2]2
y1

Z
u1Z3 Z 0

0 0 Z

 .

In examples we often make computations using representatives of elements from classes. By abuse of
notation we then write P̄ = P̂, where P̄ is the equivalence class and P̂ is the representative of this class.
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Let us define the action of the ring QΣ[Z;δΣ] on the field QΣ by the linear extension of the formula
Zs � a := δ s

Σa, where a ∈ QΣ. Note that Z � a = δΣa, as the action of the polynomial on the element of the
field, is different from Za = (δΣa)Z as a product of polynomials Z and a in the ring of polynomials. Assume
that the unimodular matrix U transforms the matrix Q̄ into the Popov form. The matrix U ∈ QΣ[Z,δΣ]

p×p,
applied as an operator to system equations (2), i.e. U � Φ, is called the linear equivalence transformation.

Assumption 2. It is assumed that system (1) (or equivalently, system (2)) can be transformed into the strong
Popov form (3) with respect to input u using linear equivalence transformations.

3. RIGHT INVERSE SYSTEM

In this section it is assumed that p 6 m. Consider the set of i/o equations in the strong Popov form (2),
satisfying Assumptions 1 and 2 together with the associated set SΣ. Denote by u a control sequence {u(t), t >
0} and by y the output sequences {y(t), t > 0}. We also consider the system

Λ : u[σk]
k = Gk(uι , . . . ,u

[σkι ]
ι ,y j, . . . ,y

[υk j]
j ), k = 1, . . . , p, (8)

where ι = 1, . . . ,m, j = 1, . . . , p in the strong Popov form with respect to u = [u1, . . . ,um]
T. Note that the

systems Λ and Σu have similar structure and both are related to the original system Σ. However, they are
introduced for different purposes and do not have to coincide. In particular, we assume that p 6 m for Λ.
Together with Λ we consider a multiplicative set SΛ. Let S be the smallest multiplicative set containing SΣ
and SΛ.
• The pair (y,u) is acceptable with respect to the multiplicative set S (shortly S-acceptable) if for any ψ ∈ S

and any t > 0, ψ(y(t), . . . ,y(t + pψ),u(t), . . . ,u(t +mψ)) ̸= 0.
• The sequence y is S-acceptable if there is u such that (y,u) is an S-acceptable pair.

Remark 1. If S is finitely generated, then the set of S-acceptable pairs (y,u) is generic in the following sense.
For every k > 0 the set of finite sequences (y(0), . . . ,y(k),u(0), . . . ,u(k)), obtained from an acceptable pair
(y,u), is open and dense in some subset of R(k+1)(p+m). This follows from the fact that non-acceptable pairs
(y,u) satisfy a finite number of analytic equations. For a similar reason for an acceptable y there is a generic
set of sequences u such that (y,u) is an acceptable pair.

Definition 6. System Λ is a right inverse of Σ if for any S-acceptable ỹ there exists ũ such that (ỹ, ũ) is
acceptable and (ỹ, ũ) solves Λ and after substituting u = ũ to Σ and setting yi(k) = ỹi(k), k = 0, . . . ,ni −1,
we get the solution y of Σ, satisfying yi(k) = ỹi(k), k > ni. The right inverse of Σ is denoted by Σ−1

R .

Proposition 2. For an S-acceptable sequence ỹ there are infinitely many solutions ũ of Λ such that (ỹ, ũ)
is S-acceptable. They correspond to a generic set of initial values uk(l), k = 1, . . . , p; l = 0, . . . ,σk −1 and
parameters uκ(l), κ = p+1, . . . ,m, l > 0.

Proof. Follows from Remark 1.

Definition 7. System (2) is said to be right invertible if its right inverse system Σ−1
R exists in the sense of

Definition 6.

From the above, if the desired trajectory for the system Σ is fed into the right inverse system Σ−1
R , then

the outputs of the right inverse generate the inputs ũ, resulting in ỹ at the output of Σ; see Fig. 1.

Σ
−1

R Σ

ỹ ũ ỹ

Fig. 1. Right inverse.
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Definition 8. [3] The rank of the matrix W ∈ QΣ[Z,δΣ]
p×m, denoted as ρ(W ), is defined to be equal to the

maximum number of QΣ[Z,δΣ]-linearly independent rows of W.

Lemma 1. ([4], Lemma 3.7) Multiplying the matrix W ∈ QΣ[Z,δΣ]
p×m by the unimodular matrix U ∈

QΣ[Z,δΣ]
p×p from the left does not change its rank, i.e. ρ(W ) = ρ(UW ).

Theorem 1. Let p 6 m. Under Assumption 2 system (2) is right invertible iff ρ(Q̄) = p.

Proof. Necessity. The proof is by contradiction. Assume that (2) is right invertible but, contrary to the claim,
ρ(Q̄) < p. If ρ(Q̄) < p, then by Proposition 1 and Lemma 1, the matrix Q̃ = UQ̄ in the Popov form has
at least one zero row. Thus globally linearized system equations (5) involve relation between differentials
dy1, . . . ,dyp, solely, not involving any of inputs u1, . . . ,um. Such a system is not right invertible by Defini-
tions 6 and 7, since one cannot guarantee that yi(k) = ỹi(k), k > ni.

Sufficiency. Assume that ρ(Q̄)= p and show that then system (2) is right invertible. According to Definitions
6 and 7, this is so when one can provide the rules for computing the input sequence {ũ(t), t > 0} such that
y(t) = ỹ(t) for t > 0. Following [2,9], one can find the matrix Q̃ := UQ̄ in the Popov form with no zero
rows. Under the assumptions of the theorem, by Lemma 1, also ρ(Q̃) = p. The application of the linear
equivalence transformation U to equations (2) yields the system in the strong Popov form (3) with respect
to the inputs. We show that (3) together with the multiplicative set SΣu is really the right inverse of (2).
Thus we set S to be the smallest multiplicative set containing SΣ and SΣu . For the sake of transparency the
remaining part of the proof is presented for the multi-input single-output case, where p = 1 and m = 2. The
simplification does not change the idea of the proof. Let Σ be given by

ϕ̃(y[n],ξ ,u[s1]
1 ,u[s2]

2 ) := y[n]−ϕ(ξ ,u[s1]
1 ,u[s2]

2 ) = 0, (9)

where ξ = (y, y[1], . . . , y[n−1], u1, . . . , u[s1−1]
1 , u2, . . . , u[s2−1]

2 ). Assume that5 s1 > s2. Due to Assumption 2
one can transform (9) via linear equivalence transformation to

ψ̃(y[n],ξ ,u[s1]
1 ,u[s2]

2 ) := u[s1]
1 −ψ(ξ ,u[s2]

2 ,y[n]) = 0, (10)

where ψ̃ = αϕ̃ for eΣ(α) ∈ QΣ. We will show that (10) is the right inverse of Σ. Let ũ1 be the solution of

ψ̃(ỹ[n],ξ ,u[s1]
1 , ũ[s2]

2 ) := u[s1]
1 −ψ(ξ , ũ[s2]

2 , ỹ[n]) = 0

for S-acceptable ỹ, some initial values u1(0), . . . ,u1(s1−1), and some ũ2(k), k > 0, such that (ỹ, ũ1, ũ2) is S-
acceptable (by Proposition 2). So (ỹ, ũ1, ũ2), where ξ̃ = (ỹ, . . . , ỹ[n−1], ũ1, . . . , ũ

[s1−1]
1 , ũ2, . . . , ũ

[s2−1]
2 ) satisfies

ũ[s1]
1 −ψ(ξ̃ , ũ[s2]

2 , ỹ[n]) = 0. (11)

Let y be the solution of (9) for this (ũ1, ũ2) and initial conditions y(ℓ) = ỹ(ℓ) for ℓ= 0, . . . ,n−1. So

y[n]−ϕ(ξ̃ , ũ[s1]
1 , ũ[s2]

2 ) = 0. (12)

On the other hand, one can transform (11) to

ỹ[n] = ϕ(ξ̃ , ũ[s1]
1 , ũ[s2]

2 ) (13)

via multiplying by α−1. From (12) and (13) one gets y[n] = ỹ[n] and consequently, y[k] = ỹ[k] for k > n.

5 There is no loss of generality in assuming s1 > s2. If s1 < s2, then renumbering u1, u2 allows us to bring the system into the
necessary form.
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Example 2. Consider the system
Σ : y[2] = uyy[1]+u[1]. (14)

Since equation (14) does not contain denominators, the set SΣ = {1}. The explicit equation of the right
inverse system is

Σu : u[1] = y[2]−uyy[1] (15)

and the set SΣu = {1}. Assume that the reference sequence {ỹ(t), t > 0} is given such that

ỹ(0) = y(0), ỹ(1) = y(1). (16)

Now one can find the input sequence {ũ(t), t > 0} as follows. First, ũ(0) can be chosen arbitrarily. By (15),

ũ(1) = ỹ(2)− ũ(0)ỹ(0)ỹ(1),
ũ(2) = ỹ(3)− ũ(1)ỹ(1)ỹ(2) = ỹ(3)− [ỹ(2)− ũ(0)ỹ(0)ỹ(1)] ỹ(1)ỹ(2),

· · ·
(17)

We show that substituting ũ(t), t > 1 into equations (14) yields, by (16), y(t,y(0),y(1), ũ(0), . . . , ũ(t −1)) =
ỹ(t), t > 2. First, note that y(0) = ỹ(0), y(1) = ỹ(1). Applying u(t) = ũ(t) in (14) yields for t = 2: y(2) =
ũ(0)y(0)y(1)+ ũ(1). Due to (16) and (17), y(2) = ũ(0)y(0)y(1)+ ỹ(2)− ũ(0)y(0)y(1) = ỹ(2). Taking t = 1
and u(t) = ũ(t) for t = 1,2 in (14), we get

y(3) = ũ(1)y(1)y(2)+ ũ(2). (18)

Substituting ũ(2) from (17) into (18) yields

y(3) = ũ(1)y(1)y(2)+ ỹ(3)− ũ(1)ỹ(1)ỹ(2). (19)

Rewrite (19) as y(3) = ũ(1) [y(1)y(2)− ỹ(1)ỹ(2)] + ỹ(3). Note that y(1) = ỹ(1) due to initial conditions,
and on the previous step we have shown that y(2) = ỹ(2). Thus the equalities y(1)y(2)− ỹ(1)ỹ(2) = 0 and
y(3) = ỹ(3) hold. In a similar manner, one can show that y(t) = ỹ(t) for t > 4. Consequently, system (14) is
right invertible by Definition 7.

Example 3. Consider the system with 3 inputs and 2 outputs:

Σ :
ϕ̃1 := u[1]1 + y[2]1 +u[1]2 y2 = 0,
ϕ̃2 := u[1]2 +u[1]3 y1 + y[3]2 = 0

(20)

with the set SΣ = {1}. After rewriting system (20) in explicit form (2), one obtains the indices

n1 = 2, n11 =−∞, n12 = 0, s11 = 1, s12 = 1, s13 =−∞,
n2 = 3, n21 = 0, n22 =−∞, s21 =−∞, s22 = 1, s23 = 1.

By Definition 1 the system is in the strong Popov form (with respect to outputs), but not in the strong Popov
form with respect to inputs, since condition (iii) of Definition 2 is not fulfilled. For system (20) the matrix

Q̄ = Q =

[
Z y2Z 0
0 Z y1Z

]
and so the rank ρ(Q̄) = 2 = p. Due to Theorem 1 the right inverse system exists for (20). The application
of Algorithm 1 from [2] to Q̄ yields the transformation matrix

U =

[
1 −y2
0 1

]
.
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Applying the operator U to [ϕ̃1, ϕ̃2]
T yields

U(Z) �
[

ϕ̃1
ϕ̃2

]
=

[
ϕ̃1 − y2ϕ̃2

ϕ̃2

]
=

[
u[1]1 + y[2]1 −u[1]3 y1y2 − y2y[3]2

u[1]2 +u[1]3 y1 + y[3]2

]
:=

[
φ̃1
φ̃2

]
.

The indices of the transformed equations (after rewriting the system in the explicit form) are

σ1 = 1, σ11 =−∞, σ12 =−∞, σ13 = 1,
σ2 = 1, σ21 =−∞, σ22 =−∞, σ23 = 1;

conditions (i)–(iii) of Definition 2 are fulfilled. Therefore u[1]1 ,u[1]2 can be expressed from φ̃1 = 0, φ̃2 = 0 as

u[1]1 =−y[2]1 +u[1]3 y1y2 + y2y[3]2 , u[1]2 =−u[1]3 y1 − y[3]2 , (21)

where u3 is considered as a free parameter. System (21) is in the strong Popov form with respect to input.
Let us show that equations (21) allow us to compute the sequence {ũ(t), t > 0}, required in Definition

6. Assume that the reference sequence {(ỹ1(t), ỹ2(t)), t > 0} is given and

ỹ1(0) = y1(0), ỹ1(1) = y1(1), ỹ2(0) = y2(0), ỹ2(1) = y2(1), ỹ2(2) = y2(2). (22)

To compute the input sequence {(ũ1(t), ũ2(t)), t > 0}, we choose the sequence {ũ3(t), t > 0} arbitrarily and
compute by (21) and (22):

ũ1(1) =−ỹ1(2)+ ũ3(1)y1(0)y2(0)+ y2(0)ỹ2(3), ũ2(1) =−ũ3(1)y1(0)− ỹ2(3),
ũ1(2) =−ỹ1(3)+ ũ3(2)y1(1)y2(1)+ y2(1)ỹ2(4), ũ2(2) =−ũ3(2)y1(1)− ỹ2(4),

. . . . . .
(23)

We show next that substituting ũ1(t), ũ2(t), and ũ3(t), t > 0 into equations (20) yields, using (22),

yi(t,y1(0),y1(1),y2(0),y2(1),y2(2), ũ(0), . . . , ũ(t −1)) = ỹi(t), t > 0, i = 1,2.

Replacing u1(t) and u2(t) respectively by ũ1(t) and ũ2(t) from (23) yields y1(2) = −ũ1(1)− ũ2(1)y2(0),
y2(3) =−ũ2(1)− ũ3(1)y1(0). Due to (22),

y1(2) =− [−ỹ1(2)+ ũ3(1)y1(0)y2(0)+ y2(0)ỹ2(3)]− [−ũ3(1)y1(0)− ỹ2(3)]y2(0) = ỹ1(2),
y2(3) =− [−ũ3(1)y1(0)− ỹ2(3)]− ũ3(1)y1(0) = ỹ2(3).

In a similar manner one can show that y1(t) = ỹ1(t), t > 3 and y2(t) = ỹ2(t), t > 4. Consequently, system
(20) is right invertible by Definition 7.

Remark 2. Although the strong Popov form itself is unique, the right inverse system is not necessarily
unique. Namely, if m > p, the equations of inverse are parametrized by m− p inputs that can be chosen
freely. Expressing u[1]1 ,u[1]3 from (20) yields alternative equations of the right inverse system, parametrized
by u2 and its shifts

u[1]1 =−y[2]1 −u[1]2 y2, u[1]3 =−(u[1]2 + y[3]2 )/y1,

satisfying Definition 6. However, the equations are not in the strong Popov form with respect to inputs,
since condition (i) of Definition 2 is not satisfied for the second equation.
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Remark 3. Sometimes the existence of an inverse system depends on the choice of variables. For instance,
the system y[3] = (u[2]1 )2+u[2]2 cannot be transformed into the explicit form with respect to u1 (required by the
Popov form), using the linear transformations, because for that the nonlinear transformation is necessary.
However, one can find the inverse system by transforming the equations into the explicit form with respect
to variable u2 via linear transformation, obtaining u[2]2 = y[3]− (u[2]1 )2. Observe that the latter system is not
in the strong Popov form according to Definition 2, because it does not match with the system description
(3) where from the ith equation the variable ui is expressed. Relaxing the assumption ji = i, made in this
paper, reveals that the system u[2]2 = y[3]−(u[2]1 )2 satisfies the conditions of the strong Popov form, as defined
in [2].

Example 4. The goal of this Example is to demonstrate that indices siι in Σ are not the same as the indices
in the inverse system; they change. For instance, given the system in the strong Popov form with respect to
outputs

Σ : y[2]1 = u[1]1 +u2, y[4]2 = y2u[3]1 + y1u2
2 (24)

together with the set SΣ = {1}, its right inverse is

Λ : u[1]1 = y[2]1 −u2, u[2]2 = y[4]1 +
u2

2y1 − y[4]2
y2

(25)

with S0
Λ = {y2}. The transformation matrix is

U =

(
−1 0
−Z2 1

y2

)
.

The comparison of maximal input shifts in the original and inverse systems reveals that shifts in the inverse
are lower than or equal to those appearing in the original system. Indeed, for (24) the indices

s11 = 1, s12 = 0,
s21 = 3, s22 = 0,

while for inverse system (25)
σ1 = 1, σ11 =−∞, σ12 = 0,
σ2 = 2, σ21 =−∞, σ22 = 0.

To find the explicit equations of the right inverse for a system described by i/o equations there is no need
to realize the equations in the state space form. However, our approach is consistent with the earlier results
for state equations. The example below demonstrates that the diagram in Fig. 2 commutes.

Example 5. (Continuation of Example 3) Consider system (20) in the strong Popov form with respect to
outputs. Following the approach in this paper, we transform (20) into the Popov form with respect to inputs
u1 and u2, obtaining (21).

An alternative way is to start by transforming i/o equations (20) into the state space form as

x[1]1 = u2x4 −u1, x[1]2 = x3, x[1]3 = u3x5 −u2, x[1]4 =−x2, x[1]5 =−x1, y1 = x1, y2 = x2, (26)

where x1 = y1, x2 = y2, x3 = y[1]2 , x4 = (u1 + y[1]1 )/u2, x5 = (u2 + y[2]2 )/u3, (see [10]). Applying the inversion
algorithm from [8] allows us to find the equations of the right inverse system of (26) as

x[1]1 = y[1]1 , x[1]2 = x3, x[1]3 = y[2]2 , x[1]4 =−x2, x[1]5 =−x1,

u1 =−y[1]1 − y[2]2 x4 +u3x4x5, u2 =−y[2]2 +u3x5.
(27)
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inverse system

in i/o form

i/o equation (2)

inverse system in

state space form

state space

equations

transformation

into Popov form

with respect

to input

state

elimination

realization

inversion

algorithm

Fig. 2. Commutation scheme.

The order of inverse system (27) can be reduced if we take into account that x1 = y1,x2 = y2, and x3 = y[1]2 ,
meaning that the first three equations in (27) are just identities (see more in [8], p. 81):

η [1]
1 =− y2, η [1]

2 =−y1,

u1 =− y[1]1 − y[2]2 η1 +u3η1η2, u2 =−y[2]2 +u3η2,
(28)

where η1 = x4 = (u1 + y[1]1 )/u2 and η2 = x5 = (u2 + y[2]2 )/u3. Eliminating state variables from (28) yields
exactly i/o equations (21), obtained directly from (20).

Example 6. Consider Example 5.2 from [7]:

Σ : y[1]1 = u1, y[2]2 = y[1]2 u[1]1 +u2 (29)

and the set SΣ = {1}. Transforming the system into the strong Popov form with respect to inputs yields the
following right inverse system:

Λ : u1 = y[1]1 , u2 = y[2]2 − y[2]1 y[1]2 (30)

and the set SΛ = {1}. The application of the IA from [7] to system (29) results also in (30).

4. LEFT INVERSE SYSTEM

In this section we assume that p > m. Let us consider the following system:

Γ : u[σk]
k = Hk(uι , . . . ,u

[σkι ]
ι ,y j, . . . ,y

[υk j]
j ), k = 1, . . . ,m, (31)

where ι = 1, . . . ,m, j = 1, . . . , p, together with the multiplicative set SΓ. Let S be the smallest multiplicative
set containing SΣ and SΓ.

Definition 9. System Γ is a left inverse of Σ if for any S-acceptable ũ there exists ỹ such that (ỹ, ũ) is S-
acceptable and solves Σ and after substituting y = ỹ to Γ and setting uk(ℓ) = ũk(ℓ), ℓ= 0, . . . ,σk −1, we get
solution u of Γ, satisfying uk(l) = ũk(l), l > σk. Then the left inverse of Σ is denoted by Σ−1

L .

Definition 10. System Σ is left invertible if there exists a left inverse of Σ in the sense of Definition 9.

If system (2) is left invertible, then it is possible to reconstruct uniquely the input ũ from the knowledge
of the observed output sequence ỹ.

Theorem 2. Let p > m. Under Assumption 2 system (2) is left invertible iff ρ(Q̄) = m.
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Proof. Sufficiency. The proof is, for transparency, presented for the single-input multi-output case where
p = 2, m = 1, described by the equations

ϕ̃1(y
[n1]
1 ,y[n2]

2 ,ξ ,u[s]) = y[n1]
1 −ϕ1(ξ ,u[s]) = 0,

ϕ̃2(y
[n1]
1 ,y[n2]

2 ,ξ ,u[s]) = y[n2]
2 −ϕ2(ξ ,u[s]) = 0

(32)

together with the multiplicative set SΣ, where ξ = (y1, . . . , y[n1−1]
1 , y2, . . . , y[n2−1]

2 , u, . . . , u[s−1]). There
exists, due to Assumption 2, a transformation operator U satisfying eΣ(U)∈QΣ[Z,δΣ]

2×2, which transforms
equations (32) into the strong Popov form

U �
[

ϕ̃1

ϕ̃2

]
=

[
ψ̃1
ψ̃2

]
,

where ψ̃1(y1, . . . ,y
[ν1]
1 ,y2, . . . ,y

[ν2]
2 ) = 0 and the second equation

Γ : ψ̃2(y
[υ1]
1 ,y[υ2]

2 ,ξ ′,u[σ ]) = u[σ ]−ψ2(ξ ′,y[υ1]
1 ,y[υ2]

2 ) = 0, (33)

where ξ ′ = (y1, . . . ,y
[v1−1]
1 ,y2, . . . ,y

[v2−1]
2 ,u, . . . ,u[σ−1]), for some nonnegative integers ν1,ν2,υ1,υ2,σ 6 s.

We demonstrate that (33) together with the multiplicative set SΓ is really the left inverse of (32). In what
follows we set S to be the smallest multiplicative set containing SΣ and SΓ.

Take S-acceptable ũ and solve Σ getting (ỹ1, ỹ2). Then we obtain

ỹ[n1]
1 −ϕ1(ξ̃ , ũ[s]) = 0, ỹ[n2]

2 −ϕ2(ξ̃ , ũ[s]) = 0.

From the linear equivalence transformation we get

ũ[σ ]−ψ2(ξ̃ ′, ỹ[υ1]
1 , ỹ[υ2]

2 ) = 0. (34)

Let us solve (33), setting yi = ỹi, i = 1,2, and u(k) = ũ(k) for k = 0, . . . ,σ −1. Then we get

u[σ ]−ψ2(ξ̃ ′, ỹ[υ̃1]
1 , ỹ[υ̃2]

2 ) = 0. (35)

From (34) and (35) it follows that u[σ ] = ũ[σ ], as required and consequently, u[k] = ũ[k] for k > σ .

Necessity. Given the system Σ and its left inverse Γ, their linearized descriptions are respectively (5) and

dΓ : R(Z)du+S(Z)dy = 0 (36)

for some polynomial matrices R ∈ QΣ[Z;δΣ]
m×m and S ∈ QΣ[Z;δΣ]

m×p. From (36) we obtain du =
−R(Z)−1S(Z)dy. Let us substitute dy by −P−1(Z)Q(Z)du from (5): du =−R(Z)−1S(Z)(−P−1(Z)Q(Z)du),
resulting in I = R−1SP−1Q. This cannot be true unless the rank ρ(Q) = m. Note that the elements of P−1

and R−1 are from the quotient field of the Ore ring QΣ[Z,δZ]. The both inverse matrices P−1 and R−1 exist,
because QΣ[Z;δΣ] is the Ore ring, see [6].

From the above, if the outputs of the original system Σ are fed into the left inverse system Σ−1
L , the latter

can reconstruct the inputs u of the original system on its output; see Fig. 3.

Σ Σ
−1

L

u y u

Fig. 3. Left inverse.
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Example 7. Consider the set of equations in the strong Popov form with respect to y1,y2,y3

Σ :

y[2]1 = u1u[1]2 −u[2]2 ,

y[3]2 = u[2]1 − y1,

y[3]3 = u[1]1 −u[1]1 u[2]2 +u[3]2 + y1y2

(37)

with the set SΣ = {1}. From (37) one obtains p = 3, m = 2. The matrix

Q̄ = Q =

 −u[1]2 Z2 −u1Z
−Z2 0

(u[2]2 −1)Z −Z3 +u[1]1 Z2


is row-reduced, since its leading coefficient matrix has rank 2. The application of Algorithm 1 from [2] to
Q̄ gives the transformation matrix

U =

−Z2 1 −Z
−Z 0 −1
1 0 0


and the set SΓ = {1}. Applying the transformation U to system equations (37) yields

U(Z) �

ϕ̃1
ϕ̃2
ϕ̃3

=

y1 − y[4]1 + y[1]1 y[1]2 + y[3]2 − y[4]3

u[1]1 − y[3]1 + y1y2 − y[3]3

u[2]2 −u1u[1]2 + y[2]1 .

=:

ψ̃1
ψ̃2
ψ̃3

 , (38)

being in the strong Popov form with respect to u1,u2. The explicit equations of the left inverse system are

Γ : u[1]1 = y[3]1 + y[3]3 − y1y2, u[2]2 = u1u[1]2 − y[2]1 . (39)

Alternatively, the left inverse system can be found via state equations, as shown in Fig. 2. For that purpose
the following steps are necessary. First, the realization of original equations (37) is constructed:

x[1]1 = u1 + x2, x[1]2 = x3, x[1]3 = u1 − x4, x[1]4 = u2x5,

x[1]5 = u1, x[1]6 = x7 −u2x5, x[1]7 = u1 + x8, x[1]8 = x1(x4 −u2),
(40a)

y1 = x4 −u2, y2 = x1, y3 = x6 +u2. (40b)

Note that this is not always doable since not all i/o equations are realizable. Second, the left inverse system
of state equations (40) is found. This can be done by expressing u1 = y[1]2 − x2, u2 = x4 − y1 from (40) and
substituting u1, u2 into (40a):

x[1]1 = y[1]2 , x[1]2 = x3, x[1]3 =−y1, x[1]4 = x5(x4 − y1), x[1]5 = y[1]2 − x2,

x[1]6 = x7 − x5(x4 − y1), x[1]7 = x8 − x2 + y[1]2 , x[1]8 = x1y1,

u1 = y[1]2 − x2, u2 = x4 − y1.

(41)

The third and last step is transforming the left inverse (41) into the form of i/o equations

u[2]1 = y1 + y[3]2 , u[2]2 = u1u[1]2 − y[2]1 . (42)
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At first sight the first equations of (39) and (42) are different; moreover, the first equation of (39) depends on
y3, whereas the first equation of (42) does not. However, note that (39) do not include the equation ψ̃1 = 0,
being part of (38). We rewrite ψ̃1 = 0 as

y[4]3 = y1 − y[4]1 + y[1]1 y[1]2 + y[3]2 . (43)

Shifting the first equation of (39) forward to obtain u[2]1 = y[4]1 + y[4]3 + y[1]1 y[1]2 and eliminating then y[4]3 using
(43) yield u[2]1 = y1 + y[3]2 , the first equation of (42). The second equations of (42) and (39) coincide.

5. CONCLUSIONS

It was shown that transforming the system into the strong Popov with respect to inputs enables one to find
the explicit equations of right and left inverse systems for the set of i/o equations, under the assumptions
m > p and p > m, respectively.

Note that the linear equivalence transformations that construct the explicit equations of the inverse
system are valid globally in the entire space besides a certain set S that consists of zeros of some functions.
Therefore, the approach avoids using the IFT (yielding, in general, only local results) or integrating the set of
1-forms obtained by the IA (yielding the generic results that are valid almost everywhere). However, when
one needs to apply nonlinear equivalence transformations, the inverse system is not necessarily defined
globally. Moreover, such transformations are difficult to find, see [1], and it is unclear whether the approach,
based on the strong Popov form, outperforms the earlier approach based on the IA.
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Popovi kuju ja pöördsüsteemi ilmutatud võrrandid

Zbigniew Bartosiewicz, Ülle Kotta, Ewa Pawłuszewicz, Maris Tõnso ja Małgorzata Wyrwas

On uuritud sisend-väljundvõrranditega antud mittelineaarsete diskreetaja süsteemide pööratavust. On leitud
tarvilikud ja piisavad tingimused süsteemi parem- ning vasakpoolse pöördsüsteemi olemasoluks. Pöörd-
süsteemi ilmutatud võrrandite leidmiseks teisendatakse originaalsüsteem sisendite suhtes tugevale Popovi
kujule. Artiklis on eeldatud, et võrrandeid saab tugevale Popovi kujule viia lineaarsete ekvivalentsiteisen-
duste abil, mis on defineeritud üle meromorfsete funktsioonide korpuse. Tugeva Popovi kuju leidmiseks
kasutatakse mittekommutatiivsete polünoomide ringi teooriat, konstruktiivne meetod selleks on esitatud
varasemas artiklis.


