eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Free vibration analysis of a functionally graded material beam: evaluation of the Haar wavelet method; pp. 1–9

Maarjus Kirs, Kristo Karjust, Imran Aziz, Erko Õunapuu, Ernst Tungel


The current study focuses on the evaluation of the Haar wavelet method, i.e. its comparison with widely used strong formulation based methods (FDM-finite difference method and DQM-differential quadrature method). A solid element 3D finite element model is developed and the numerical results obtained by using simplified approaches are confirmed.



    1.           Chen, C. F. and Hsiao, C. H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Contr. Theor. Appl., 1997, 144(1), 87–94.

   2.           Hsiao, C. H. State analysis of the linear time delayed systems via Haar wavelets. Math. Comp. Simulat., 1997, 44(5), 457–470.

   3.           Majak, J., Pohlak, M., and Eerme, M. Application of the Haar wavelet problems of orthotropic plates and shells. Mechanic of Composite Materials, 2009, 45(6), 631–642.

   4.           Kirs, M., Mikola, M., Haavajõe, A., Õunapuu, E., Shvartsman, B., and Majak, J. Haar wavelet method for vibration analysis of nanobeams. Waves, Wavelets and Fractals – Advanced Analysis, 2016, 2, 20−28.

   5.           Lepik, Ü. Solving PDEs with the aid of two dimensional Haar wavelets. Comput. Math. Appl., 2011, 61, 1873–1879.

   6.           Lepik, Ü. Solving fractional integral         equations by the Haar wavelet method. Appl. Math. Comput., 2009, 214(2), 468–478.

   7.           Xie, X., Jin, G., Yan, Y., Shi, S. X., and Liu, Z. Free vibration analysis of composite laminated cylindrical shells using the Haar wavelet method. Compos. Struct., 2014, 109, 169–177.

   8.           Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simulat., 2005, 68, 127–143.

   9.           Lepik, Ü. and Hein, H. Haar Wavelets: With Applications. Springer, New York, 2014.

10.           Ray, S. S. and Patra, A. Numerical simulation based on Haar wavelet operational method to solve neutron point kinetics equation involving sinusoidal and pulse reactivity. Ann. Nucl. Energy, 2014, 73, 408–412.

11.           Islam, S. U., Aziz, I., and Al-Fhaid, A. S. An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J. Comput. Appl. Math., 2014, 260, 449–469.

12.           Aziz, I., Islam, S. U., and Khana, F. A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J. Comput. Appl. Math., 2014, 272, 70–80.

13.           Aziz, I. and Islam, S. U. New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math., 2013, 239, 333–345.

14.           Majak, J., Pohlak, M., Eerme, M., and Lepikult, T. Weak formulation based Haar wavelet method for solving differential equations. Appl. Math. Comput., 2009, 211(2), 488–494.

15.           Saeedi, H., Mollahasani, N., Moghadam, M., and Chuev, G. An operational Haar wavelet method for solving fractional Volterra integral equations. Int. J. Appl. Math. Comput. Sci., 2011, 21(3), 535–547.

16.           Majak, J., Shvartsman, B. S., Kirs, M., Pohlak, M., and Herranen, H. Convergence theorem for the Haar wavelet based discretization method. Compos. Struct., 2015, 126, 227–232.

17.           Majak, J., Shvartsman, B. S., Karjust, K., Mikola, M., Haavajõe, A., and Pohlak, M. Composites. Part B: Engineering, 2015, 80, 321–327.

18.           Heydari, M. H., Hooshmandasl, M. R., and Mohammadi, F. Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput., 2014, 234, 267–276.

19.           Heydari, M. H., Hooshmandasl, M. R., and Mohammadi, F. Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv. Appl. Math. Mech., 2014, 6(2), 247–260.

20.           Heydari, M. H., Hooshmandasl, M. R., and Ghaini, F. M. M. A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model., 2014, 38(5–6), 1597–1606.

21.           Majak, J., Shvartsman, B., Pohlak, M., Karjust, K., Eerme, M., and Tungel, E. 2016. Solution of fractional order differential equation by the Haar wavelet method. Numerical convergence analysis for most commonly used approach. In              AIP Conference Proceedings, 1738 (Simos, T., ed.), 480110. 1.4952346 (accessed 2016-11-30).

22.           Rehman, M. U. and Khan, R. A. Numerical solutions to initial and boundary value problems for linear fractional partial differential equations. Appl. Math. Model., 2013, 37, 5233–5244.

23.           Ray, S. S. and Patra, A. Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system. Appl. Math. Comput., 2013, 220, 659–667.

24.           Saeed, U., Rejman, M., and Iqubal, M. A. Haar wavelet-Picard technique for fractional order nonlinear initial and boundary value problems. Sci. Res. Essays, 2014, 9(12), 571–580.

25.           Hein, H. and Feklistova, L. Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Pr., 2011, 25, 2257–2270.

26.           Jin, G., Xie, X., and Liu, Z. The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory. Compos. Struct., 2014, 108, 435–448.

27.           Li, X. F., Kang, Y. A., and Wu, J. X. Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust., 2013, 74, 413–420.

28.           Lu, Z. R., Lin, X. X., Chen, Y. M., and Huang, M. Hybrid sensitivity matrix for damage identification in axially functionally graded beams. Appl. Math. Model., 2017, 41, 604–617.

29.           Shvartsman, B. and Majak, J. Numerical method for stability analysis of functionally graded beams on elastic foundation. Appl. Math. Model., 2016, 40, 3713–3719.

30.           Alshorbagy, A. E., Eltaher, M. A., and Mahmoud, F. F. Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model., 2011, 35, 412–425.

31.           Aruniit, A., Kers, J., Goljandin, D., Saarna, M., Tall, K., Majak J., and Herranen, H. Particulate filled composite plastic materials from recycled glass fibre reinforced plastics. Materials Science (Medžiagotyra), 2011, 17(3), 276–281.

32.           Lellep, J. and Majak, J. On optimal orientation of nonlinear elastic orthotropic materials. Struct. Optimization, 1997, 14, 116–120.

33.           Majak, J. and Hannus, S. Orientational design of aniso­tropic materials using the Hill and Tsai-Wu strength criteria. Mech. Compos. Mater., 2003, 39(6), 509–520.

34.           Aruniit, A., Kers, J., Majak, J., Krumme, A., and Tall, K. Influence of hollow glass microspheres on the mechanical and physical properties and cost of particle reinforced polymer composites. Proc. Estonian Acad. Sci., 2012, 61, 160–165.

35.           Herranen, H., Allikas, G., Eerme, M., Vene, K., Otto, T., Gregor, A., et al. Visualization of strain distribution around the edges of a rectangular foreign object inside the woven carbon fibre specimen. Estonian J. Eng., 2012, 18, 279–287.

36.         Pohlak, M., Majak, J., and Eerme, M. 2008. Optimization of car frontal protection systems. In Proceedings of the 6th international conference of DAAAM Baltic Industrial Engineering, 24–26th April 2008 (Küttner, R. ed.), 123–128.


Back to Issue