ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Free vibration analysis of a functionally graded material beam: evaluation of the Haar wavelet method; pp. 1–9
PDF | https://doi.org/10.3176/proc.2017.4.01

Authors
Maarjus Kirs, Kristo Karjust, Imran Aziz, Erko Õunapuu, Ernst Tungel
Abstract

 

The current study focuses on the evaluation of the Haar wavelet method, i.e. its comparison with widely used strong formulation based methods (FDM-finite difference method and DQM-differential quadrature method). A solid element 3D finite element model is developed and the numerical results obtained by using simplified approaches are confirmed.

 

References

    1.           Chen, C. F. and Hsiao, C. H. Haar wavelet method for solving lumped and distributed-parameter systems. IEE Proc. Contr. Theor. Appl., 1997, 144(1), 87–94.
https://doi.org/10.1049/ip-cta:19970702

   2.           Hsiao, C. H. State analysis of the linear time delayed systems via Haar wavelets. Math. Comp. Simulat., 1997, 44(5), 457–470.
https://doi.org/10.1016/S0378-4754(97)00075-X

   3.           Majak, J., Pohlak, M., and Eerme, M. Application of the Haar wavelet problems of orthotropic plates and shells. Mechanic of Composite Materials, 2009, 45(6), 631–642.
https://doi.org/10.1007/s11029-010-9119-0

   4.           Kirs, M., Mikola, M., Haavajõe, A., Õunapuu, E., Shvartsman, B., and Majak, J. Haar wavelet method for vibration analysis of nanobeams. Waves, Wavelets and Fractals – Advanced Analysis, 2016, 2, 20−28.

   5.           Lepik, Ü. Solving PDEs with the aid of two dimensional Haar wavelets. Comput. Math. Appl., 2011, 61, 1873–1879.
https://doi.org/10.1016/j.camwa.2011.02.016

   6.           Lepik, Ü. Solving fractional integral         equations by the Haar wavelet method. Appl. Math. Comput., 2009, 214(2), 468–478.
https://doi.org/10.1016/j.amc.2009.04.015

   7.           Xie, X., Jin, G., Yan, Y., Shi, S. X., and Liu, Z. Free vibration analysis of composite laminated cylindrical shells using the Haar wavelet method. Compos. Struct., 2014, 109, 169–177.
https://doi.org/10.1016/j.compstruct.2013.10.058

   8.           Lepik, Ü. Numerical solution of differential equations using Haar wavelets. Math. Comput. Simulat., 2005, 68, 127–143.
https://doi.org/10.1016/j.matcom.2004.10.005

   9.           Lepik, Ü. and Hein, H. Haar Wavelets: With Applications. Springer, New York, 2014.
https://doi.org/10.1007/978-3-319-04295-4

10.           Ray, S. S. and Patra, A. Numerical simulation based on Haar wavelet operational method to solve neutron point kinetics equation involving sinusoidal and pulse reactivity. Ann. Nucl. Energy, 2014, 73, 408–412.
https://doi.org/10.1016/j.anucene.2014.07.025

11.           Islam, S. U., Aziz, I., and Al-Fhaid, A. S. An improved method based on Haar wavelets for numerical solution of nonlinear integral and integro-differential equations of first and higher orders. J. Comput. Appl. Math., 2014, 260, 449–469.
https://doi.org/10.1016/j.cam.2013.10.024

12.           Aziz, I., Islam, S. U., and Khana, F. A new method based on Haar wavelet for the numerical solution of two-dimensional nonlinear integral equations. J. Comput. Appl. Math., 2014, 272, 70–80.
https://doi.org/10.1016/j.cam.2014.04.027

13.           Aziz, I. and Islam, S. U. New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets. J. Comput. Appl. Math., 2013, 239, 333–345.
https://doi.org/10.1016/j.cam.2012.08.031

14.           Majak, J., Pohlak, M., Eerme, M., and Lepikult, T. Weak formulation based Haar wavelet method for solving differential equations. Appl. Math. Comput., 2009, 211(2), 488–494.
https://doi.org/10.1016/j.amc.2009.01.089

15.           Saeedi, H., Mollahasani, N., Moghadam, M., and Chuev, G. An operational Haar wavelet method for solving fractional Volterra integral equations. Int. J. Appl. Math. Comput. Sci., 2011, 21(3), 535–547.
https://doi.org/10.2478/v10006-011-0042-x

16.           Majak, J., Shvartsman, B. S., Kirs, M., Pohlak, M., and Herranen, H. Convergence theorem for the Haar wavelet based discretization method. Compos. Struct., 2015, 126, 227–232.
https://doi.org/10.1016/j.compstruct.2015.02.050

17.           Majak, J., Shvartsman, B. S., Karjust, K., Mikola, M., Haavajõe, A., and Pohlak, M. Composites. Part B: Engineering, 2015, 80, 321–327.
https://doi.org/10.1016/j.compositesb.2015.06.008

18.           Heydari, M. H., Hooshmandasl, M. R., and Mohammadi, F. Legendre wavelets method for solving fractional partial differential equations with Dirichlet boundary conditions. Appl. Math. Comput., 2014, 234, 267–276.
https://doi.org/10.1016/j.amc.2014.02.047

19.           Heydari, M. H., Hooshmandasl, M. R., and Mohammadi, F. Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv. Appl. Math. Mech., 2014, 6(2), 247–260.
https://doi.org/10.4208/aamm.12-m12132

20.           Heydari, M. H., Hooshmandasl, M. R., and Ghaini, F. M. M. A new approach of the Chebyshev wavelets method for partial differential equations with boundary conditions of the telegraph type. Appl. Math. Model., 2014, 38(5–6), 1597–1606.
https://doi.org/10.1016/j.apm.2013.09.013

21.           Majak, J., Shvartsman, B., Pohlak, M., Karjust, K., Eerme, M., and Tungel, E. 2016. Solution of fractional order differential equation by the Haar wavelet method. Numerical convergence analysis for most commonly used approach. In              AIP Conference Proceedings, 1738 (Simos, T., ed.), 480110. http://dx.doi.org/10.1063/ 1.4952346 (accessed 2016-11-30).

22.           Rehman, M. U. and Khan, R. A. Numerical solutions to initial and boundary value problems for linear fractional partial differential equations. Appl. Math. Model., 2013, 37, 5233–5244.
https://doi.org/10.1016/j.apm.2012.10.045

23.           Ray, S. S. and Patra, A. Haar wavelet operational methods for the numerical solutions of fractional order nonlinear oscillatory Van der Pol system. Appl. Math. Comput., 2013, 220, 659–667.
https://doi.org/10.1016/j.amc.2013.07.036

24.           Saeed, U., Rejman, M., and Iqubal, M. A. Haar wavelet-Picard technique for fractional order nonlinear initial and boundary value problems. Sci. Res. Essays, 2014, 9(12), 571–580.
https://doi.org/10.5897/SRE2013.5777

25.           Hein, H. and Feklistova, L. Computationally efficient delamination detection in composite beams using Haar wavelets. Mech. Syst. Signal Pr., 2011, 25, 2257–2270.
https://doi.org/10.1016/j.ymssp.2011.02.003

26.           Jin, G., Xie, X., and Liu, Z. The Haar wavelet method for free vibration analysis of functionally graded cylindrical shells based on the shear deformation theory. Compos. Struct., 2014, 108, 435–448.
https://doi.org/10.1016/j.compstruct.2013.09.044

27.           Li, X. F., Kang, Y. A., and Wu, J. X. Exact frequency equations of free vibration of exponentially functionally graded beams. Appl. Acoust., 2013, 74, 413–420.
https://doi.org/10.1016/j.apacoust.2012.08.003

28.           Lu, Z. R., Lin, X. X., Chen, Y. M., and Huang, M. Hybrid sensitivity matrix for damage identification in axially functionally graded beams. Appl. Math. Model., 2017, 41, 604–617.
https://doi.org/10.1016/j.apm.2016.09.008

29.           Shvartsman, B. and Majak, J. Numerical method for stability analysis of functionally graded beams on elastic foundation. Appl. Math. Model., 2016, 40, 3713–3719.
https://doi.org/10.1016/j.apm.2015.09.060

30.           Alshorbagy, A. E., Eltaher, M. A., and Mahmoud, F. F. Free vibration characteristics of a functionally graded beam by finite element method. Appl. Math. Model., 2011, 35, 412–425.
https://doi.org/10.1016/j.apm.2010.07.006

31.           Aruniit, A., Kers, J., Goljandin, D., Saarna, M., Tall, K., Majak J., and Herranen, H. Particulate filled composite plastic materials from recycled glass fibre reinforced plastics. Materials Science (Medžiagotyra), 2011, 17(3), 276–281.
https://doi.org/10.5755/j01.ms.17.3.593

32.           Lellep, J. and Majak, J. On optimal orientation of nonlinear elastic orthotropic materials. Struct. Optimization, 1997, 14, 116–120.
https://doi.org/10.1007/BF01812513

33.           Majak, J. and Hannus, S. Orientational design of aniso­tropic materials using the Hill and Tsai-Wu strength criteria. Mech. Compos. Mater., 2003, 39(6), 509–520.
https://doi.org/10.1023/B:MOCM.0000010623.38596.3e

34.           Aruniit, A., Kers, J., Majak, J., Krumme, A., and Tall, K. Influence of hollow glass microspheres on the mechanical and physical properties and cost of particle reinforced polymer composites. Proc. Estonian Acad. Sci., 2012, 61, 160–165.
https://doi.org/10.3176/proc.2012.3.03

35.           Herranen, H., Allikas, G., Eerme, M., Vene, K., Otto, T., Gregor, A., et al. Visualization of strain distribution around the edges of a rectangular foreign object inside the woven carbon fibre specimen. Estonian J. Eng., 2012, 18, 279–287.
https://doi.org/10.3176/eng.2012.3.13

36.         Pohlak, M., Majak, J., and Eerme, M. 2008. Optimization of car frontal protection systems. In Proceedings of the 6th international conference of DAAAM Baltic Industrial Engineering, 24–26th April 2008 (Küttner, R. ed.), 123–128.

 

Back to Issue