eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Leaf-mimicking polymers for hydrophobicity and high transmission haze; pp. 444–449

Zhongjia Huang, Congcong Cai, Xinying Shi, Taohai Li, Marko Huttula, Wei Cao

Gifted with unique optical and hydrophobic properties, the plant leaves have been recently considered as micro/ nanostructure prototypes for functional surface engineering. Imprinting bio-inspired structures onto surfaces can yield in similar functional properties than in the nature. In this article, we report on a simple and effective method to copy leaf surface structures onto poly-(methyl methacrylate) sheets. The replicated surface structures reduce optical reflectance and enhance optical haze. Besides, the artificial polymer sheets exhibit good hydrophobic properties. Correlation between optical haze and hydrophobicity was studied.


   1.  Barthlott, W. and Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997, 202, 1−8.

   2.  Dorrer, C. and Rühe, J. Some thoughts on superhydrophobic wetting. Soft Matter, 2009, 5, 51−61.

   3.  Brodribb, T. J., Feild, T. S., and Sack, L. Viewing leaf structure and evolution from a hydraulic perspective. Funct. Plant Biol., 2010, 37, 488−498.

   4.  Wang, F., Zhao, D., Guo, Z., Liu, L., Zhang, Z., and Shen, D. Artificial leaf structures as a UV detector formed by the self-assembly of ZnO nanoparticles. Nanoscale, 2013, 5, 2864−2869.

   5.  Scholes, G. D., Fleming, G. R., Olaya-Castro, A., and van Grondelle, R. Lessons from nature about solar light harvesting. Nature Chem., 2011, 3, 763−774.

   6.  Huang, Z., Yang, S., Zhang, H., Zhang, M., and Cao, W. Replication of leaf surface structures for light harvesting. Sci. Rep., 2015, 5, 14281.

   7.  Raut, H. K., Ganesh, V. A., Nair, A. S., and Ramakrishna, S. Anti-reflective coatings: a critical, in-depth review. Energy Environ. Sci., 2011, 4, 3779−3804.

   8.  Huang, Z., Shi, T., Zhang, H., Zhang, M., Huttula, M., and Cao, W. A computational study of antireflection structures bio-mimicked from leaf surface morphologies. Sol. Energy, 2016, 131, 131−137.

   9.  Neinhuis, C. and Barthlott, W. Characterization and dis­tribution of water-repellent, self-cleaning plant surfaces. Ann. Bot., 1997, 79, 667−677.

10.  Ganesh V. A., Raut, H. K., Nair, A. S., and Ramakrishna, S. A review on self-cleaning coatings. J. Mater. Chem., 2011, 21, 16304−16322.

11.  Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetyl­acetonate. Adv. Mater., 1999, 11, 1365−1368.<1365::AID-ADMA1365>3.0.CO;2-F

12.  Feng, L., Li, S., Li, Y., Li, H., Zhang, L., Zhai, J., Song, Y., Liu, B., Jiang, L., and Zhu, D. Super-hydrophobic surfaces: from natural to artificial. Adv. Mater., 2002, 14, 1857.

13.  Gao, X. and Jiang, L. Water-repellent legs of water striders. Nature, 2004, 432, 36.

14.  Huang, Z., Cai, C., Wang, G., Zhang, H., Huttula, M., and Cao, W. Structural color model based on surface morphology of morpho butterfly wing scale. Surf. Rev. Lett., 2016, 23, 1650046.

15.  Cassie, A. B. D. and Baxter, S. Wettability of porous surfaces. Trans. Faraday Soc., 1944, 40, 546.

16.  Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature, 2005, 437, 640−647.

17.  Sun, T., Feng, L., Gao, X., and Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res., 2005, 38, 644.

18.  Chen, Y., Li, F., Cao, W., and Li, T. Preparation of recyclable CdS photocatalytic and superhydrophobic films with photostability by using a screen-printing technique. J. Mater. Chem. A, 2015, 3, 16934–16940.

19.  Zhu, S., Yang, X., Li, T., Li, F., and Cao, W. Phase and morphology controllable synthesis of superhydrophobic Sb2O3 via a solvothermal method. J. Alloy Compd., 2017, 721, 149–156.

Back to Issue