ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Carbon nanotubes modified with octylthiophene derivatives for improved performance of ethylene-octene copolymer composites; pp. 437–443

Full article in PDF format | https://doi.org/10.3176/proc.2017.4.13

Authors
Tatjana Ivanova, Ingars Reinholds, Remo Merijs Meri, Janis Zicans

Abstract

The effects of poly-3-octylthiophene (P3OT) functionalized multiwalled carbon nanotubes (MWCNTs) on the structure as well as stress-strain characteristics and electrical conductivity of ethylene-octene copolymer with 17% of octene comonomer content (EOC17) are investigated. According to Raman spectroscopy and TEM analysis, thiophene groups have been successfully grafted onto the surface of MWCNTs. EOC17 nanocomposites with P3OT functionalized MWCNTs show simultaneously high values of stress at break and strain at break, even at high nanofiller content, being respectively 2.5 and 3.5 times higher than the values determined for the systems containing pristine MWCNTs. It is also demonstrated that at functionalized filler content of 10 wt%, twofold increment of the modulus of elasticity is observed. In addition to that, P3OT functionalized MWCNTs containing EOC nanocomposites possess up to 279 times greater electrical conductivity in comparison to the systems with pristine MWCNTs.


References

 

   1.  Printz, A. D. and Lipomi, D. J. Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics. Appl. Phys. Rev., 2016, 3, 021302.
https://doi.org/10.1063/1.4947428

   2.  Sattar, R., Kausar, A., and Siddiq, M. Advances in thermoplastic polyurethane composites reinforced with carbon nanotubes and carbon nanofibers: A review. J. Plast. Film Sheet., 2015, 31(2), 186–224.
https://doi.org/10.1177/8756087914535126

   3.  Xie, F., Huang, L., Leng, J., and Liu, Y. Thermoset shape memory polymers and their composites. J. Intel. Mat. Syst. Str., 2016, 27(18), 2433–2455.
https://doi.org/10.1177/1045389X16634211

   4.  Palza, H., Garzon, C., and Rojas, M. Elastomeric ethylene copolymers with carbon nanostructures having tailored strain sensor behavior and their interpretation based on the excluded volume theory. Polym. Int., 2016, 65(12), 1441–1448.
https://doi.org/10.1002/pi.5199

   5.  Theravalappil, R., Svoboda, P., Vilcakova, J., Poongavalappil, S., Slobodianc, P., and Svobodova, D. A comparative study on the electrical, thermal and mechanical properties of ethylene–octene copolymer based composites with carbon fillers. Mater. Design., 2014, 60, 458–467.
https://doi.org/10.1016/j.matdes.2014.04.029

   6.  Wang, W., Liu, Y., and Leng, J. Recent developments in shape memory polymer nanocomposites: actuation methods and mechanisms. Coordin. Chem. Rev., 2016, 320–321, 38–52.
https://doi.org/10.1016/j.ccr.2016.03.007

   7.  McGrail, B. T., Sehirlioglu, A., and Pentzer, E. Polymer composites for thermoelectric applications. Angew. Chem. Int. Ed., 2015, 54, 1710–1723.
https://doi.org/10.1002/anie.201408431

   8.  Chatterjee, T., Dey, P., Nando, G. B., and Naskar, K. Thermo-responsive shape memory polymer blends based on alpha olefin and ethylene propylene diene rubber. Polymer, 2015, 78, 180–192.
https://doi.org/10.1016/j.polymer.2015.10.007

   9.  McCullough, R. D. The chemistry of conducting polythiophenes. Adv. Mater., 1998, 10(2), 93–116.
https://doi.org/10.1002/(SICI)1521-4095(199801)10:2<93::AID-ADMA93>3.0.CO;2-F

10.  Huang, Y.-J., Hsieh, T.-H., Wang, Y.-Z., Chuang, C.-N., Chen, Y.-P., Huang, P.-T., and Ho, K.-S. Effect of nonconjugated polymers on the conjugation length and structure of poly(3-octylthiophene) in ternary polymer blend. J. Appl. Polym. Sci., 2007, 104, 773–781.
https://doi.org/10.1002/app.25616

11.  Massoumi, B., Jaymand, M., Samadi, R., and Entezami, A. A. In situ chemical oxidative graft polymerization of thiophene derivatives from multi-walled carbon nanotubes. J. Polym. Res., 2014, 21(5), 1–9.
https://doi.org/10.1007/s10965-014-0442-3

12.  Blaudeck, T., Adner, D., Hermann, S., Lang, H., Gessner, T., and Schulz, S. E. Wafer-level decoration of carbon nanotubes in field-effect transistor geometry with performed gold nanoparticles using a microfluidic approach. Microelectron. Engin., 2015, 137, 135–140.
https://doi.org/10.1016/j.mee.2014.09.010

13.  Patole, A. S., Patole, S. P., Jung, S.-Y., Yoo, J.-B., An, J.-H., and Kim, T.-H. Self assembled graphene/carbon nanotube/ polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Europ. Polym. J., 2012, 48(2), 252–259.
https://doi.org/10.1016/j.eurpolymj.2011.11.005

 


Back to Issue