ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Representing the Banach operator ideal of completely continuous operators; pp. 189–193

Full article in PDF format | https://doi.org/10.3176/proc.2017.2.10

Author
Rauni Lillemets

Abstract

Let V ;W and W be the operator ideals of completely continuous, weakly -compact, and weakly compact operators, respectively. In a recent paper, William B. Johnson, Eve Oja, and the author proved that V = W ◦W -1 (Johnson, W. B., Lillemets, R., and Oja, E. Representing completely continuous operators through weakly -compact operators. Bull. London Math. Soc., 2016, 48, 452–456). We show that this equality also holds in the context of Banach operator ideals


References

1. Ain, K., Lillemets, R., and Oja, E. Compact operators which are defined by p-spaces. Quaest. Math., 2012, 35, 145–159.
https://doi.org/10.2989/16073606.2012.696819

2. Ain, K. and Oja, E. On (p; r)-null sequences and their relatives. Math. Nachr., 2015, 288, 1569–1580.
https://doi.org/10.1002/mana.201400300

3. Grothendieck, A. Produits tensoriels topologiques et espaces nucl´eaires. Mem. Am. Math. Soc., 1955, 16.

4. Lindenstrauss, J. and Tzafriri, L. Classical Banach Spaces I. Ergebnisse der Mathematik und ihrer Grenzgebiete 92. Springer–Verlag, Berlin–Heidelberg–New York, 1977.

5. Johnson, W. B., Lillemets, R., and Oja, E. Representing completely continuous operators through weakly-compact operators. Bull. London Math. Soc., 2016, 48, 452–456.
https://doi.org/10.1112/blms/bdw015

6. Pietsch, A. Operator Ideals. Deutsch. Verlag Wiss., Berlin, 1978; North-Holland Publishing Company, Amsterdam–New York–Oxford, 1980.

7. Sinha, D. P. and Karn, A. K. Compact operators whose adjoints factor through subspaces of ℓp. Studia Math., 2002, 150, 17–33.
https://doi.org/10.4064/sm150-1-3

 


Back to Issue