eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Modelling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas.; pp. 68–77
PDF | doi: 10.3176/proc.2016.1.07

Toomas Tenno, Ergo Rikmann, Ivar Zekker, Taavo Tenno, Laura Daija, Alexey Mashirin

Equilibrium processes involving dissolved CO2 play a vital role in many biological and technological systems. Dissolved CO2 is an available carbon source for autotrophic organisms that have great natural and technological relevancy. In many places, including northern Estonia, the soil bedrock is limestone (CaCO3), which has a relatively small ion product and hence low solubility. However, in the equilibrium system CaCO3 ↔ CO32– ↔ HCO3 ↔ H2CO3 ↔ CO2 the solubility of CaCO3 is elevated, which causes a relatively high alkalinity (pH > 8) of surface and ground water as a result of increased concentration of CO32–, HCO3, and OH ions. In this paper the equilibrium processes involving CaCO3 (limestone) in liquid–gas–solid phase systems are described. The equilibrium distribution of ions and molecules in the system is described on the basis of a structural scheme. A mathematical model is presented for the calculation of pH and concentrations of ions and molecules in the equilibrium system CO32–, HCO3, CO2, Ca2+, H+, and OH at different concentrations of CO2 in its liquid phase using an iteration method. The developed model was experimentally validated.


  1. Ahrens, C. D. Essentials of Meteorology: An Invitation to the Atmosphere. Brooks/Cole, Belmont, CA, 2011, p. 5.

  2. U.S National Oceanic & Atmospheric Administration, Earth System Research Laboratory, gmd/ccgg/trends/ (accessed 13.02.2015).

  3. Baird, C. and Cann, M. Environmental Chemistry. 3rd ed. W. H. Freeman & Co, New York, 2005.

  4. vanLoon, G. W. and Duffy, S. J. Environmental Chemistry: A Global Perspective. 2nd ed. Oxford University Press, 2007, pp. 241–244.

  5. Zekker, I., Rikmann, E., Loorits, L., Tenno, T., Fritze, H., Tuomivirta, T., et al. Start-up of low temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ. Technol., 2015, 36, 214–225.

  6. Zekker, I., Rikmann, E., Tenno, T., Kroon, K., Vabamäe, P., Salo, E., et al. Deammonification process start-up after enrichment of anammox microorganisms from reject water in a moving-bed biofilm reactor. Environ. Technol., 2013, 34, 3095–3101.

  7. Saini, R., Kapoor, R., Kumar, R., Siddiqi, T. O., and Kumar, A. CO2 utilizing microbes – a comprehensive review. Biotechnol. Adv., 2011, 29, 949–960.

  8. Snoeyink, V. L. and Jenkins, D. Water Chemistry. John Wiley & Sons, Inc., New York, 1980, pp. 160, 448.

  9. Zekker, I., Rikmann, E., Tenno, T., Seiman, A., Loorits, L., Kroon, K., et al. Nitritating-anammox biomass tolerant to high DO concentration and C/N ratio in treatment of yeast factory wastewater. Environ. Technol., 2014, 35, 1565–1576.

10. Farooq, W., Suh, W. I., Park, M. S., and Yang, J.-W. Water use and its recycling in microalgae cultivation for biofuel application. Bioresource Technol., 2015, 184, 73–81.

11. Zhang, X. L., Yan, S., Tyagi, R. D., and Surampalli, R. Y. Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production. Renew. Sust. Energ. Rev., 2013, 26, 216–223.

12. Uusitalo, J. Algal carbon uptake and the difference between alkalinity and high pH (“alkalization”), exemplified with a pH drift experiment. Sci. Mar., 1996, 60(Supl. 1), 129–134.

13. Fraiha, M., Ferraz, A. C. de O., and Biagi, J. D. Pre-treatment of thermoduric spores in CO2 modified atmosphere and their survivability during food extrusion. Ciência e Tecnologia de Alimentos, 2011, 31(1), 167–171.

14. Garcia-Gonzalez, L., Geeraerd, A. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J., et al. High pressure carbon dioxide inactivation of micro­organisms in foods: the past, the present and the future. Int. J. Food Microbiol., 2007, 117, 1–28.

15. Zekker, I., Rikmann, E., Tenno, T., Vabamäe, P., Kroon, K., Loorits, L., et al. Effect of HCO3 concen­tration on anammox nitrogen removal rate in moving bed biofilm reactor. Environ. Technol., 2012, 33, 2263–2271.

16. Kalm, V. and Gorlach, A. Impact of bedrock surface topography on spatial distribution of Quaternary sediments and on the flow pattern of late Weichselian glaciers on the East European Craton (Russian Plain). Geomorphology, 2014, 207(15), 1–9.

17. Stirling, A. and Pápai, I. H2CO3 forms via HCO3 in water. J. Phys. Chem. B, 2010, 114, 16854–16859.

18. Stumm, W. and Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd ed. John Wiley & Sons, Inc., New York, 1996, p. 214.

19. Chang, R. Physical Chemistry with Applications to Biological Systems. 2nd ed. Williams College, Macmillan Publishing Co., Inc., New York, 1990, p. 320.

20. Moran, D. Carbon dioxide degassing in fresh and saline water. I: Degassing performance of a cascade column. Aquat. Eng., 2010, 43, 29–36.

21. Zekker, I., Tenno, T., Selberg, A., and Uiga, K. Dissolution modeling and experimental measurement of CaS–H2O binary system. Chinese J. Chem., 2011, 29, 2327–2336.

22. Segal, B. G. Chemistry, Experiment and Theory. John Wiley & Sons, Inc., New York, 1989, pp. 363–365.

23. Dean, J. A. Lange’s Handbook of Chemistry. McGraw-Hill, Inc., New York, 1992, pp. 7, 8.

24. Skoog, D. A., West, D. M., and Holler, F. J. Fundamentals of Analytical Chemistry. 6th ed. Saunders College Publishing, 1992.

Back to Issue