ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A note on Lie superalgebras; pp. 332–337

Full article in PDF format | doi: 10.3176/proc.2010.4.12

Authors
Rein-Karl Loide, Pavel Suurvarik

Abstract
We treat the possible Lie superalgebras where in addition to Poincaré generators there are n supergenerators. These superalgebras are determined with the help of relativistic wave equations. It is shown that structure constants are connected with the matrices of first-order relativistic wave equations. Some of these Lie superalgebras may be interesting from mathematical point of view.
References

  1. Kac, V. G. Lie superalgebras. Adv. Math., 1977, 26, 8–96.
doi:10.1016/0001-8708(77)90017-2

  2. Cornwell, J. F. Group Theory in Physics. Volume III. Supersymmetries and Infinite-Dimensional Algebras. Elsevier Academic Press, London, 2005.

  3. Frappat, L., Sorba, P., and Sciarrino, A. Dictionary on Lie Superalgebras. hep-th/9607161v1.

  4. Colfand, Y. A. and Likhtman, E. P. Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Lett., 1971, 13, 323.

  5. Wess, J. and Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B, 1974, 70, 39–50.
doi:10.1016/0550-3213(74)90355-1

  6. Terning, J. Modern Supersymmetry. Dynamics and Duality. Oxford University Press, Oxford, 2007.

  7. Weinberg, S. The Quantum Theory of Fields. Volume III. Supersymmetry. Cambridge University Press, Cambridge, 2000.

  8. Martin, S. P. A Supersymmetry primer. In Perspctives on Supersymmetry (Kane, G. L., ed.), pp. 1–98, World Scienific, Singapore, 1998. hep-ph/9709356.

  9. Coleman, S. and Mandula, J. All possible symmetries of the S-matrix. Phys. Rev., 1967, 159, 1251–1256.
doi:10.1103/PhysRev.159.1251

10. Haag, R., Lopuszanski, J. T., and Sohnius, M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B, 1975, 88, 257–274.
doi:10.1016/0550-3213(75)90279-5

11. Salam, A. and Strathdee, J. A. Unitary representations of super-gauge symmetries. Nucl. Phys. B, 1974, 80, 499–505.
doi:10.1016/0550-3213(74)90500-8

12. Strathdee, J. Extended Poincaré supersymmetry. Int. J. Mod. Phys., 1987, A2, 273.

13. Bagger, J. and Lambert, N. Modeling multiple M2’S. Phys. Rev., 2007, D75, 045020. arXiv:hep-th/0611108.

14. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev., 2008, D77, 065008. arXiv:0711.0955 [hep-th].

15. De Medeiros, P., Figueroa-O’Farrill, J., Méndez-Escobar, E., and Ritter, P. On the Lie-algebraic origin of metric 3-algebras. Commun. Math. Phys., 2009, 290(3), 871–902. arXiv:0809.1086[hep-th].

16. Ainsaar, A. A Supersymmetry of Bosons. Preprint FI-38, Tartu, 1975.

17. Loide, R.-K. Equations for a vector-bispinor. J. Phys. A: Math. Gen., 1984, 17, 2535–2550.
doi:10.1088/0305-4470/17/12/024
Back to Issue