eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

A note on Lie superalgebras; pp. 332–337

Full article in PDF format | doi: 10.3176/proc.2010.4.12

Rein-Karl Loide, Pavel Suurvarik

We treat the possible Lie superalgebras where in addition to Poincaré generators there are n supergenerators. These superalgebras are determined with the help of relativistic wave equations. It is shown that structure constants are connected with the matrices of first-order relativistic wave equations. Some of these Lie superalgebras may be interesting from mathematical point of view.

  1. Kac, V. G. Lie superalgebras. Adv. Math., 1977, 26, 8–96.

  2. Cornwell, J. F. Group Theory in Physics. Volume III. Supersymmetries and Infinite-Dimensional Algebras. Elsevier Academic Press, London, 2005.

  3. Frappat, L., Sorba, P., and Sciarrino, A. Dictionary on Lie Superalgebras. hep-th/9607161v1.

  4. Colfand, Y. A. and Likhtman, E. P. Extension of the algebra of Poincaré group generators and violation of P invariance. JETP Lett., 1971, 13, 323.

  5. Wess, J. and Zumino, B. Supergauge transformations in four dimensions. Nucl. Phys. B, 1974, 70, 39–50.

  6. Terning, J. Modern Supersymmetry. Dynamics and Duality. Oxford University Press, Oxford, 2007.

  7. Weinberg, S. The Quantum Theory of Fields. Volume III. Supersymmetry. Cambridge University Press, Cambridge, 2000.

  8. Martin, S. P. A Supersymmetry primer. In Perspctives on Supersymmetry (Kane, G. L., ed.), pp. 1–98, World Scienific, Singapore, 1998. hep-ph/9709356.

  9. Coleman, S. and Mandula, J. All possible symmetries of the S-matrix. Phys. Rev., 1967, 159, 1251–1256.

10. Haag, R., Lopuszanski, J. T., and Sohnius, M. All possible generators of supersymmetries of the S-matrix. Nucl. Phys. B, 1975, 88, 257–274.

11. Salam, A. and Strathdee, J. A. Unitary representations of super-gauge symmetries. Nucl. Phys. B, 1974, 80, 499–505.

12. Strathdee, J. Extended Poincaré supersymmetry. Int. J. Mod. Phys., 1987, A2, 273.

13. Bagger, J. and Lambert, N. Modeling multiple M2’S. Phys. Rev., 2007, D75, 045020. arXiv:hep-th/0611108.

14. Bagger, J. and Lambert, N. Gauge symmetry and supersymmetry of multiple M2-branes. Phys. Rev., 2008, D77, 065008. arXiv:0711.0955 [hep-th].

15. De Medeiros, P., Figueroa-O’Farrill, J., Méndez-Escobar, E., and Ritter, P. On the Lie-algebraic origin of metric 3-algebras. Commun. Math. Phys., 2009, 290(3), 871–902. arXiv:0809.1086[hep-th].

16. Ainsaar, A. A Supersymmetry of Bosons. Preprint FI-38, Tartu, 1975.

17. Loide, R.-K. Equations for a vector-bispinor. J. Phys. A: Math. Gen., 1984, 17, 2535–2550.
Back to Issue