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Abstract. We treat the possible Lie superalgebras where in addition to Poincaré generators there are n supergenerators. These
superalgebras are determined with the help of relativistic wave equations. It is shown that structure constants are connected with
the matrices of first-order relativistic wave equations. Some of these Lie superalgebras may be interesting from mathematical point
of view.
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1. INTRODUCTION

Let us recall the definition of Lie superalgebra L. Let L be a complex (real) graded vector space so that
L = L0 ⊕ L1. The subspace L0 is the even with dimension m and L1 is the odd with dimension n. Any
element a ∈ L that is either even or odd is said to be homogeneous, and degree (or parity or grading) is
defined by

dega =
{

0 if a ∈ L0,
1 if a ∈ L1.

For all a,b ∈ L there exists a generalized Lie product (or supercommutator) [a,b}, [a,b} ∈ L with the
properties:
(1) for all a,b,c ∈ L, and any complex (real) numbers α and β

[αa+βb,c}= α[a,c}+β [b,c};

(2) if a and b are homogeneous elements of L then [a,b} is also a homogeneous element of L, whose degree
is (dega+degb)(mod2); that is [a,b} is odd if either a or b is odd, [a,b} is even if a and b are both even
or if a and b are both odd;

(3) for any two homogeneous elements a and b of L

[b,a}=−(−1)(deg a)(deg b)[a,b};

(4) for any three homogeneous elements a, b, and c of L, the generalized Jacobi identity holds

[a, [b,c}}(−1)(deg a)(deg c) +[b, [c,a}}(−1)(deg b)(deg a) +[c, [a,b}}(−1)(deg c)(deg b) = 0.
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Then L is said to be a complex (real) Lie superalgebra with even dimension m and odd dimension n.
It follows in particular that a Lie algebra is a Lie superalgebra which has no odd elements. A Lie
superalgebra can be obtained from any associative superalgebra by taking the generalized Lie product (or
supercommutator) [a,b} of the form

[a,b}= ab− (−1)(deg a)(deg b)ba. (1)

That is if at least one of the elements a and b is even, then this implies that [a,b] = ab−ba, and if a and b
are odd elements, then {a,b} = ab + ba. A way to get a Lie superalgebra is to start with a Lie algebra L0,
choose a representation of L0 with a carrier space L1, and set up direct sum L0⊕L1. See for example [1–3].

Next we treat the Poincaré superalgebra (supersymmetry algebra). Supersymmetry or Bose–Fermi
symmetry transforms bosonic fields into fermionic ones and vice versa. This symmetry requires the
extension of the Poincaré Lie algebra with generators of supersymmetry transformations, that is extension of
the Poincaré algebra to the Poincaré superalgebra or supersymmetry algebra [4,5], see for reviews [6–8]. In
addition to the Poincaré superalgebra there are the conformal superalgebras, the de Sitter superalgebras, and
the anti-de Sitter superalgebras associated with space-time symmetries. These are respectively extensions
of the conformal, the de Sitter, and the anti-de Sitter algebras. The even part of the Poincaré superalgebra
satisfies the constraint which comes from the Coleman–Mandula no-go theorem [7,9]. Their theorem states
that the only symmetry of the scattering matrix (S-matrix) that includes Poincaré symmetry is the product
of the Poincaré symmetry and an internal symmetry group G⊗T . The basic elements of the odd part L1
form the carrier space of some representation of L0. In particular, they must form the carrier space of
some representation of the homogeneous Lorentz algebra. By Haag, Lopuszanski, and Sohnius extension
of Coleman–Mandula theorem [10] this representation is equivalent to the direct sum of N copies of the
4-dimensional spinor representation (Majorana spinor) QA

α , for A = 1, ...,N and α = 1, ...,4. Of course their
theorems hold only under a number of certain physical assumptions.

We can write the N-extended Poincaré superalgebra [10–12] for D = 4 dimensional Minkowski space-
time as

[Pµ ,Pν ] = 0,

[Mµν ,Pρ ] = i(ηνρPµ −ηµρPν),
[Mµν ,Mρσ ] =−i(ηµρMνσ −ηµσ Mνρ −ηνρMµσ +ηνσ Mµρ),
[QA

α ,Pµ ] = 0, (2)

[QA
α ,Mµν ] =

1
2
(σ µν)αβ QA

β ,

{QA
α ,QB

β}=−2(γµC)αβ Pµδ AB +CαβUAB +(γ5C)αβV AB.

[Ti,Tj] = i f k
i jTk, [Ti,Mµν ] = [Ti,Pµ ] = 0,

[Ti,QA
α ] = (ξi)A

BQB
α +(ζi)A

B(γ5)
β
αQB

β ,

[UAB,anything] = [UAB,anything] = 0.

Here µ,ν , ... = 0,1,2,3 are space-time indices, α,β , ... = 1, ...,4 are four-spinor indices. As we see from
(2) in addition to Poincaré generators Pµ , Mµν there are more than one anticommuting Majorana spinorial
charges (supersymmetry generators) QA

α , (the indices A = 1, ...,N label the representation of the internal
symmetry group to which QA

α belongs). Ti, i = 1, ...,dimT is the generator of the internal symmetry group.
The antisymmetric operators UAB =−UBA and V AB =−V BA are central charges, and matrices ξ ,ζ that have
to satisfy (ξ j + iζ j) =−(ξ j + iζ j)† σ µν are Lorentz generators for a bispinor, γµ are Dirac matrices, and C
is charge conjugation matrix.

The central charges can appear only for N ≥ 2. The N = 1 Poincaré superalgebra is known as
simple Poincaré superalgebra, there are no central charges. In the absence of central charges the Poincaré
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superalgebra is invariant under a group U(N) of internal symmetries and in case N = 1 the U(1) invariance
is known as R-symmetry. The Poincaré superalgebra and other superalgebras associated with space-time
symmetries have great importance in physics, but there are relatively new interesting structures such as
3-algebras [13–15].

2. POSSIBLE POINCARÉ SUPERALGEBRAS

In this note we deal with algebras where the number of anticommuting generators is arbitrary and give the
general form of the structure constants. These superalgebras are definitely interesting from mathematical
point of view. We consider an algebra where the generators Pµ and Mµνof the Poincaré group and n
generators Sα satisfy the relations:

[Pµ ,Pν ] = 0,

[Mµν ,Pρ ] = cµν ,ρ
κ Pκ ,

[Mµν ,Mρσ ] = cµν ,ρσ
κλ Mκλ ,

[Sα ,Pµ ] = 0, (3)

[Sα ,Mµν ] = Bµν
αβ Sβ ,

{Sα ,Sβ}= Aκ,αβ Pκ ,

where

cµν ,ρσ
κλ =

1
2
[ηµσ (ην

κ ηρ
λ −ηρ

κ ην
λ )+ηµρ(ηµ

κ ησ
λ −ησ

κ ηµ
λ )

−ηµρ(ην
κ ησ

λ −ησ
κ ην

λ )−ηνσ (ηµ
κ ηρ

λ −ηρ
κ ηµ

λ )], (4)

cµν ,ρ
κ = ηνρηµ

κ −ηµρην
κ , (5)

and η00 = −η11 = −η22 = −η33 = 1. In this paper κ ,λ ,µ,ν ,ρ,σ = 0,1,2,3 and α,β ,γ,δ = 1,2, ...,n,
summation over the repeating indices is presumed. Proceeding from the Jacobi identities, it is easy to
demonstrate that Bµν

αβ are the matrix elements of the generators Bµν of some n-dimensional representation
(reducible or irreducible) of the Lorentz group and Aµ,αβ are matrix elements of matrices Aµ which are
connected with the β -matrices of an invariant first-order equation

(pµβ µ −m)ψ(p) = 0. (6)

The idea is to reduce the conditions we get from the Jacobi identities to some well-known commutation
relations. Starting with the Jacobi identities it is easy to be convinced that we must look through the identities
with generators Sα and Mµν . First we start from the identities

[Sα , [Mµν ,Mρσ ]]+ [Mρσ , [Sα ,Mµν ]]+ [Mµν , [Mρσ ,Sα ]] = 0.

Using the relations (3), we obtain

cµν ,ρσ
κλ Bκλ

αγ −Bµν
αβ Bρσ

βγ +Bρσ
αβ Bµν

βγ = 0.

That gives for matrices Bµν

[Bµν ,Bρσ ] = cµν ,ρσ
κλ Bκλ . (7)

The last relations are the well-known commutation relations of the Lorentz group generators. Therefore the
matrices Bµν are the generators of some arbitrary n-dimensional representation of the Lorentz group, and
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the structure constants Bµν
αβ in (3) are its matrix elements. The number of the anticommuting generators is

equal of course to the dimension of the Bµν representation. The second Jacobi identity

−{Sβ , [Mµν ,Sα ]}+{Sα , [Sβ ,Mµν ]}+[Mµν ,{Sα ,Sβ}] = 0

gives the relations
Bµν

αγ Aκ,βγ +Bµν
βγ Aκ,αγ + cµν ,λ

κ Aλ ,αβ = 0.

For matrices Bµν and Aµ

BµνAκ +AκBµν =−cµν ,λ
κ Aλ . (8)

Here Bµν is Bµν transposed and we have used the fact that Aµ = Aµ . Now we suppose that there exists a
matrix C which satisfies

CBµνC−1 =−Bµν . (9)

Then we can write (8) as
[Bµν ,AκC−1] =−cµν,λ

κ AλC−1.

Denoting
βκ = AκC−1 (10)

we obtain
[Bµν ,βκ ] =−cµν ,λ

κ βλ . (11)

The last relations are the invariance conditions for the first-order wave equation (6) corresponding to the
Bµν representation. Therefore the matrices Aκ are connected with the β -matrices of an invariant equation.
From the relation (10)

Aκ = βκC (12)

and therefore
{Sα ,Sβ}= (βκC)αβ Pκ .

As regards matrix C which satisfies (9), it should be mentioned that such a matrix always exists because it
exists in the case of the spinor representations (1/2,0) and (0,1/2). To show this, we write the generators
Bµν in the form B0k = ∓1

2 σ k, Bkl = i
2 εkl

m σm (k, l,m = 1,2,3; ε123 = 1), where the minus sign corresponds
to the representation (1/2,0), and the plus sign to (0,1/2) and σ1,σ 2,σ 3 are the Pauli matrices. Now the
matrix C must satisfy Cσ kC−1 = −σ k. In the case of the usual representation of the Pauli matrices one
can take C = ±σ 2. As other representations are obtainable from direct products of spinor representations,
Matrix C also exists. In the case of Dirac bispinor (1/2,0)⊕ (0,1/2) C is charge conjugation operator. The
matrices βκ and C must be chosen to satisfy βκC = βκC.

3. SOME CONCLUSIONS

In the previous section it is shown that there exist general Poincaré superalgebras (3) where Bµν are
generators of some n-dimensional representation of the homogeneous Lorentz group and Aµ are determined
by the β -matrices of the corresponding first-order wave equation (7). Let us consider some examples.
1. There are Lie superalgebras with simply anticommuting Sα generators independently of the choice of

generators, since one can always take Aµ = 0.
2. If Bµν are the generators of some irreducible representation of the Lorentz group, we have also Aµ = 0,

since there are no first-order equations. In the case of first-order equations (6), the β -representation is
always reducible and composed of “linked” irreducible representations.

3. The most important supersymmetry algebra (2) in case N = 1 corresponds to the choice Bµν = 1
2 σ µν ,

where Bµν are the Lorentz generators for a Dirac bispinor representation and Aµ are determined by
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the well-known Dirac equation (pµγµ −m)ψ = 0 for a bispinor Aµ = γµC. The N-extended Poincaré
superalgebras, which are the basics of modern supersymmetry models in quantum field theory, are built
similarly.

4. Usually it is assumed that the generators Sα are fermionic, especially in physical applications, since then
we have Fermi–Bose symmetry. However, algebra (3) allows also bosonic generators Sα . For example,
if we take five generators Sα , where four are components of some four-vector Sµ and the fifth is scalar S,
the matrices Aµ are connected with the s = 0 Kemmer–Duffin matrices [16]. Now there is no Bose–Fermi
symmetry, since Bose and Fermi fields are not mixed in the same multiplet.

5. The next physically interesting Poincaré superalgebra is obtained if we take instead of Dirac bispinor
supergenerators Sα 16 vector-bispinor generators Sµ

α . In that case Aµ are connected with the β -matrices
of the Rarita–Schwinger equation. The Rarita–Schwinger equation is used to describe spin 3/2, but
depending on the choice of free parameters present in the equation it may describe single spin 3/2, spin
3/2 and one spin 1/2, spin 3/2, and two spins 1/2. The general form of the corresponding β -matrices
is the following [17]

(β µ)ρ
σ = γµηρ

σ +
(

a√
3
− 1

2

)
ηµργσ +

(
b√
3
− 1

2

)
γρηµ

σ +
(

a+b
4
√

3
+

c
4

+
3
8

)
γργµγσ ,

where a,b, and c are some real free parameters. The choice of parameters determines the mass and
spin content of a given equation. There exist the following choices of parameters. In the single spin 3/2
case ab =−1/4, c =−1/2, if ab = c/2 (except c =−1/2) in addition to spin 3/2 there is also one spin
1/2 state present. If 4ab≥−(c−1/2)2 we have one spin 3/2 and two spin 1/2 states. In other cases the
equation turns out to be unphysical, since the spin 1/2 states do not have real masses. For that reason Lie
superalgebras with vector-bisponor generators may offer numerous possibilities. We hope that they may
be interesting also in physical applications.
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Lie superalgebratest

Rein-Karl Loide ja Pavel Suurvarik

On vaadeldud võimalikke Lie superalgebraid, milles lisaks Poincaré generaatoritele on n supergeneraatorit.
Sellised superalgebrad on määratud relativistlike lainevõrrandite kaudu. On näidatud, et struktuurikons-
tandid on seotud esimest järku lainevõrrandite maatriksitega. Mõned sellistest Lie superalgebratest võivad
pakkuda matemaatilist huvi.


