eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Some properties of biconcircular gradient vector fields; pp. 162–169

Full article in PDF format | doi: 10.3176/proc.2009.3.03

Adela Mihai

We consider a Riemannian manifold carrying a biconcircular gradient vector field X, having as generative a closed torse forming U. The existence of such an X is determined by an exterior differential system in involution depending on two arbitrary functions of one argument. The Riemannian manifold is foliated by Einstein surfaces tangent to X and U. Properties of the biconcircular vector field X  are investigated.

1. Cartan, E. Systèmes Différentiels Extérieurs et Leurs Applications Géométriques. Hermann, Paris, 1975.

2. Dieudonné, J. Elements d’Analyse, Vol. IV. Gauthier Villars, Paris, 1977.

3. Matsumoto, K., Mihai, A., and Rosca, R. Riemannian manifolds carrying a pair of skew symmetric Killing vector field. An. Şt. Univ. “Al. I. Cuza” Iaşi, 2003, 49, 137–146.

4. Mihai, I., Rosca, R., and Verstraelen, L. Some Aspects of the Differential Geometry of Vector Fields. K.U. Leuven, K.U. Brussel, PADGE 2, 1996.

5. O’Neill, B. Semi-Riemannian Geometry. Academic Press, 1983.

6. Poor, W. A. Differential Geometric Structures. McGraw Hill, New York, 1981.

7. Reyes, E. and Rosca, R. On biconcircular gradient vector fields. Rend. Sem. Mat. Messina Serie II, 1999, 6 (21), 13–25.

8. Rosca, R. An exterior concurrent skew-symmetric Killing vector field. Rend. Sem. Mat. Messina, 1993, 2, 131–145.

9. Yano, K. On torse-forming directions in Riemannian spaces. Proc. Imp. Acad. Tokyo, 1984, 20, 340–345.

Back to Issue