ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

On the acceleration of convergence by regular matrix methods; pp. 3–17

Full article in PDF format | doi: 10.3176/proc.2008.1.01

Author
Ants Aasma

Abstract
Regular matrix methods that improve and accelerate the convergence of sequences and series are studied. Some problems related to the speed of convergence of sequences and series with respect to matrix methods are discussed. Several theorems on the improvement and acceleration of the convergence are proved. The results obtained are used to increase the order of approximation of Fourier expansions and Zygmund means of Fourier expansions in certain Banach spaces.
References

  1. Brezinski, C. Convergence acceleration during the 20th century. J. Comput. Appl. Math., 1999, 122, 1–21.
doi:10.1016/S0377-0427(00)00360-5

  2. Caliceti, E., Meyer-Hermann, M., Ribeca, P., Surzhykov, A. and Jentschura, U. D. From useful algorithms for slowly convergent series to physical predictions based on divergent perturbative expansions. Phys. Rep., 2007, 446, 1–96.
doi:10.1016/j.physrep.2007.03.003

  3. Kangro, G. On the summability factors of the Bohr–Hardy type for a given rapidity. I. ENSV Tead. Akad. Toim. Füüs. Matem., 1969, 18, 137–146 (in Russian).

  4. Kangro, G. Summability factors for the series l-bounded by the methods of Riesz and Cesàro. Acta Comment. Univ. Tartuensis, 1971, 277, 136–154 (in Russian).

  5. Kornfeld, I. Nonexistence of universally accelerating linear summability methods. J. Comput. Appl. Math., 1994, 53, 309–321.
doi:10.1016/0377-0427(94)90059-0

  6. Tammeraid, I. Generalized linear methods and convergence acceleration. Math. Model. Anal., 2003, 8, 87–92.

  7. Tammeraid, I. Convergence acceleration and linear methods. Math. Model. Anal., 2003, 8, 329–335.

  8. Tammeraid, I. Several remarks on acceleration of convergence using generalized linear methods of summability. J. Comput. Appl. Math., 2003, 159, 365–373.
doi:10.1016/S0377-0427(03)00539-9

  9. Aasma, A. Some remarks on convergence improvement by regular matrices. In Proceedings of International Conference on Operational Research: Simulation and Optimisation in Business and Industry (Pranevičius, H., Vaarmann, O. and Zavadskas, E., eds). Technologia, Kaunas, 2006, 95–99.

10. Butzer, P. L. and Nessel, R. I. Fourier Analysis and Approximation I: One-Dimensional Theory. Birkhäuser, Basel, 1971.

11. Trebels, W. Multipliers for (C, a)-bounded Fourier expansions in Banach spaces and approximation theory. Lecture Notes Math., 1973, 329.

12. Leiger, T. Methods of Functional Analysis in Summability Theory. Tartu University Press, Tartu, 1992 (in Estonian).

13. Boos, J. Classical and Modern Methods in Summability. Oxford University Press, Oxford, 2000.

14. Aasma, A. Matrix transformations of l-boundedness fields of normal matrix methods. Stud. Sci. Math. Hungar., 1999, 35, 53–64.

15. Stieglitz, M. and Tietz, H. Matrixtransformationen von Folgenräumen. Eine Ergebnisübersicht. Math. Z., 1977, 154, 1–14.
doi:10.1007/BF01215107

16. Kangro, G. On summability factors. Acta Comment. Univ. Tartuensis, 1955, 37, 191–229 (in Russian).

17. Baron, S. Introduction to the Theory of Summability of Series. Valgus, Tallinn, 1977 (in Russian).

18. Aasma, A. Comparison of orders of approximation of Fourier expansions by different matrix methods. Facta Univ. (Niš) Ser. Math. Inform., 1997, 12, 233–238.

19. Aasma, A. On the summability of Fourier expansions in Banach spaces. Proc. Estonian Acad. Sci. Phys. Math., 2002, 51, 131–136.
Back to Issue