1. Bergh, J. and Löfström, J. Interpolation Spaces. An Introduction. Springer-Verlag, Berlin-New York, 1976.
2. Brudnyi, Yu. A. and Krugljak, N. Interpolation Functors and Interpolation Spaces 1. North Holland, Amsterdam, 1991.
3. Kirsch, A. An Introduction to the Mathematical Theory of Inverse Problems. Springer, New York, 1996.
4. Chan, T. and Shen, J. Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods. SIAM, Philadelphia, 2005.
5. Meyer, Y. Oscillating Pattern in Image Processing and Nonlinear Evolution Equations. University Lecture Series, AMS Providence, 2002, 22.
6. Bechler, P., DeVore, R., Kamot, A., Petrova, G., and Wojtaszczyk, P. Greedy wavelet projections are bounded on BV. Trans. AMS, 2007, 359, 619–635.
doi:10.1090/S0002-9947-06-03903-1
7. Cohen, A., DeVore, R., Petrushev, P., and Xu, H. Nonlinear approximation and the space BV(R 2). Amer. J. Math., 1999, 121, 587–628.
doi:10.1353/ajm.1999.0016
8. Cohen, A., Dahmen, W., Daubechies, I., and DeVore, R. Harmonic analysis of the space BV. Rev. Mat. Iberoamericana, 2003, 19, 235–263.
9. Daubechies, I., Teschke, G., and Vese, L. Iteratively solving linear inverse problems with general convex constraints. Inverse Probl. Imaging, 2007, 1, 29–46.
10. Kruglyak, N. Smooth analogs of Calderon–Zygmund decompositions, quantitative covering theorems and K-functional for the couple (Lp, Wqk). Algebra i Analiz, 1996, 8, 110–160 (in Russian); English translation in St.-Petersburg Math. Journal, 1997, 8, 617–649.
11. Kruglyak, N. The K-functional and Calderón–Zygmund type decompositions. Contemporary Math., 2007, 446, 183–194.
12. Brudnyi, Yu. A. Spaces determined by local approximations. Trudy Mosk. Matem. Ob-va, 1971, 24, 69–132.
13. Triebel, H. Theory of Function Spaces II. Monographs in Mathematics, 1992, 84.
14. Besicovitch, A. S. A general form of the covering principle and relative differentiation of additive functions II. Proc. Cambridge Philos. Soc., 1946, 42, 1–10.
doi:10.1017/S0305004100022660