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Abstract. Let Ω be a rectangle in R2. A new algorithm for the construction of a near-minimizer for the couple (L2(Ω),BV (Ω)) is
presented. The algorithm is based on the Besicovitch covering theorem and analysis of local approximations of the given function
f ∈ L2(Ω).
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The theory of real interpolation is based on the notion of Peetre’s K-functional, which is defined for the
couple of Banach spaces (X0,X1) by the formula

K(t,x;X0,X1) = inf
u∈X1

(‖x−u‖X0
+ t ‖u‖X1

),

where x ∈ X0 +X1 and t > 0.
It is well known that the K-functional is connected (see [1,2]) to the more general Lp,q-functional,

defined for 0 < p, q < ∞ by the expression

Lp,q(t,x;X0,X1) = inf
u∈X1

(‖x−u‖p
X0

+ t ‖u‖q
X1

), t > 0.

Definition 1. An element xt ∈ X1 will be called a near-minimizer for the Lp,q-functional of the element
x ∈ X0 +X1 at the point t > 0 if

‖x− xt‖p
X0

+ t ‖xt‖q
X1
≤ cLp,q(t,x;X0,X1).

In the case when c = 1 the element xt will be called the exact minimizer for the Lp,q-functional.

Let us give one example connected to inverse problems (see, for example, [3]). Let A : X →Y be a given
linear bounded operator which maps the Hilbert space X to the Hilbert space Y . Suppose that we observe
the quantity

y = Ax+η , (1)

where η ∈ Y is a ‘noise’ and we are interested in the reconstruction of the exact solution x ∈ X of (1).
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An attempt to define an approximate solution of (1) as A−1y does not lead to success even in the case
when A is injective and y belongs to the image of the operator A, since such a procedure usually increases
the level of noise. For example, this happens even in the finite-dimensional case when A has rather small
singular numbers. Hence more sophisticated ideas are used to solve this problem. One of the most popular
methods to construct an approximate solution to (1) is the classical Tikhonov regularization strategy, which
suggests that as an approximate solution we take an element xt ∈X which minimizes the Tikhonov functional

TA(t,y) = ‖y−Ax‖2
Y + t ‖x‖2

X

for some parameter t > 0 chosen on the basis of a priori information on the noise η and the exact solution x.
In fact, the Tikhonov method is deeply connected to the problem of constructing a minimizer for the

L2,2-functional for the Hilbert couple (Y,A(X)), where by A(X) we denote the image of the space X with
the norm

‖u‖A(X) = inf
u=Ax

‖x‖X .

Indeed, from the equality

L2,2(t,y;Y,A(X)) = inf
u∈A(X)

(‖y−u‖2
Y + t ‖u‖2

A(X))

= inf
x∈X

(
‖y−Ax‖2

Y + t ‖x‖2
X

)
= inf

x∈X
T (t,y)

it follows that if the element xt ∈ X is the minimizer for the Tikhonov functional, then

L2,2(t,y;Y,A(X)) = ‖y−Axt‖2
Y + t ‖xt‖2

X = ‖y−Axt‖2
Y + t ‖Axt‖2

A(X) ,

and therefore Axt is a minimizer for the L2,2-functional. Moreover, in the case when A is an injective operator
the element xt can be reconstructed as A−1ut , where ut is a minimizer for the L2,2-functional of the element
y for the Hilbert couple (Y,A(X)).

The Tikhonov method provides regularization only for the case of Hilbert spaces, however, during the
last years regularization in the case when X , Y are not Hilbert spaces have attained a great importance. For
example, a ROF (Rudin–Osher–Fatemi) model, which is very popular in image processing, suggests (see
the books [4,5]) reduction of the level of noise in the ‘noisy’ image f ∈ L2 by taking instead of f an element
ft which minimizes the L2,1-functional of the couple (L2,BV )

L2,1(t, f ;L2,BV ) = inf
g∈BV

(‖ f −g‖2
L2 + t ‖g‖BV ). (2)

However, to construct the exact minimizer and even a near-minimizer for the functional (2) is not a simple
task and several different approaches have been suggested (see, for example, [6–9], and the book [4]). The
most popular methods are based on nonlinear elliptic partial differential equations and on wavelet theory.

Below we will present a new algorithm for constructing a near-minimizer for (2). This algorithm is
a limiting case of the general algorithm (see [10,11]) and is based on the theory of local approximations
(see [12,13]) and the Besicovitch covering theorem [14].

The algorithm consists of three steps (see Fig. 1). In the first step we analyse the local approximations
of the given function f ∈ L2 and construct the initial family of cubes1 {Qx}. In the second step we apply the
Besicovitch covering theorem to the family {Qx} and obtain a family of cubes {Ki}i∈I consisting of a finite
number of cubes. In the third step we use the family of cubes {Ki}i∈I to construct a partition of unity and to
define a near-minimizer ft .

Let us consider the algorithm in detail. Let f ∈ L2 = L2(Ω), where Ω⊂ R2 is a rectangle, and let t > 0
be a given number. We will construct a near-minimizer for (2), i.e. an element ft such that

‖ f − ft‖2
L2 + t ‖ ft‖BV ≤ cL2,1(t, f ;L2,BV )

with the constant c > 1 independent of f ∈ L2 and t > 0.
1 Here and below we consider only cubes with sides parallel to the coordinate axes.
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Fig. 1. The three steps of the algorithm.

If t ≥ t∗, where

t∗ =
(∫

Ω

∣∣ f (s)− fΩ)
∣∣2 ds

) 1
2

, fΩ =
1
|Ω|

∫

Ω
f (s)ds, (3)

then it is possible to prove that the near-minimizer can be defined as a constant function on Ω equal to fΩ.
Hence it is enough to consider the case when t < t∗.

In the first step of the algorithm we construct the initial family of cubes {Qx = Q(x,rx)}x∈Ω. Here and
below by Q(x,r) we denote a cube Q with the centre at the point x and radius r equal to the half side length
of Q.

To construct the cube Q(x,rx) for x ∈Ω, we consider the function

ϕx(r) =
(∫

Q(x,r)∩Ω

∣∣ f (s)− fQ(x,r)
∣∣2 ds

) 1
2

,

where
fQ(x,r) =

1
|Q(x,r)∩Ω|

∫

Q(x,r)∩Ω
f (s)ds.

It is clear that the function ϕx(r) is a nondecreasing continuous function with values from zero to t∗ defined
in (3). As t < t∗, therefore for each x ∈ Ω there exists a number r = rx such that (see Fig. 2)

ϕx(rx) =
(∫

Q(x,rx)∩Ω

∣∣ f (s)− fQ(x,rx)
∣∣2 ds

) 1
2

= t.

As the initial family of cubes {Qx}x∈Ωwe will take the constructed family {Q(x,rx)}x∈Ω. Note that from
the condition ϕx(rx) = t it follows that if the subfamily {Q(xi,rxi)}i∈I of {Q(x,rx)}x∈Ω consists of pairwise

Fig. 2. Graph of the function ϕx(r).
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disjoint cubes, then the number of cubes |I| in the subfamily satisfies the inequality

t2 · |I|= ∑
i∈I

∫

Q(xi,rxi )∩Ω

∣∣∣ f (s)− fQ(xi,rxi )

∣∣∣
2

ds≤ ‖ f‖2
L2 (4)

and therefore is finite.
Now we will apply the Besicovitch covering theorem to the initial family of cubes {Qx}x∈Ω. Let us

remind the formulation of the Besicovitch theorem (see [15]).

Theorem 2. Let Ω ⊂ Rn be a bounded set. Suppose that for any x ∈ Ω the cube Qx with the centre in x is
given. Then there exists a subfamily {Qxi} which covers Ω, i.e. Ω ⊂ ∪Qxi , and which can be split into a
finite number of subfamilies of pairwise disjoint cubes πk = {Qxi}i∈Ik

. Moreover, the number of subfamilies
πk can be estimated only by the dimension n.

From (4) we see that each subfamily πk consists of a finite number of cubes and therefore the whole
family of constructed cubes {Ki = Qxi}i∈I is finite and covers Ω.

Below we will assume that cubes Ki are indexed in agreement with the decrease in their volume. Now
we are ready to give the formula for the near-minimizer ft for the L-functional (2). On K1∩Ω we will take
ft equal to fK1 , then we define ft on (K2 ∩Ω)\K1 by the constant fK2 on (K3 ∩Ω)\(K1 ∪K2), etc. As the
number of the cubes in the family {Ki} is finite, the process of constructing the function ft consists of a
finite number of steps. The constructed near-minimizer can be written as

ft = fK1ψ1 + fK2ψ2 + ...+ fKN ψN ,

where the functions
ψ1 = χK1∩Ω, ψ2 = χK2∩Ω\K1 , ... , ψN = χKN∩Ω\∪i<NKi

form a partition of unity of Ω. Note that the constructed near-minimizer is not a continuous function.

Remark 3. Construction of the family of cubes {Ki} in the Besicovitch covering theorem is constructive: as
the first cube K1 we take the largest or almost the largest cube in the family {Qx}x∈Ω. Then from the family
{Qx}x∈Ω we exclude cubes with centres in K1. As the cube K2 we take the largest or almost the largest cube
from the family of remaining cubes, etc.
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Besicovitchi katmisteoreem ja lähi-minimiseerijad paarile (L2,BV )
Irina Asekritova ja Natan Kruglyak

On esitatud uudne algoritm (Peetre K-funktsionaali üldistava) Lp,q-funktsionaali lähi-minimiseerija konst-
rueerimiseks paarile (L2(Ω),BV (Ω)), kus Ω on ristkülik ruumis R2. Algoritm toetub Besicovitchi
katmisteoreemile.


