1. Albert, A. A. Non-associative algebras. I. Fundamental concepts and isotopy. Ann. Math. (2), 1942, 43, 685–707.
2. Albert, A. A. Absolute valued real algebras. Ann. Math. (2), 1947, 48, 495–501.
3. Althoen, S. C. and Kugler, L. D. When is R2 a division algebra? Amer. Math. Monthly, 1983, 90(9), 625–635.
doi:10.2307/2323281
4. Benkart, G. M. and Osborn, J. M. An investigation of real division algebras using derivations. Pacific J. Math., 1981, 96(2), 265–300.
5. Benkart, G. and Osborn, J. M. The derivation algebra of a real division algebra. Amer. J. Math., 1981, 103(6), 1135–1150.
doi:10.2307/2374227
6. Benkart, G., Britten, D., and Osborn, J. M. On applications of isotopy to real division algebras. Hadronic J., 1981, 4, 497–529.
7. Benkart, G., Britten, D. J., and Osborn, J. M. Real flexible division algebras. Can. J. Math., 1982, 34, 550–588.
8. Bott, R. and Milnor, J. On the parallelizability of the spheres. Bull. Amer. Math. Soc., 1958, 64, 87–89.
doi:10.1090/S0002-9904-1958-10166-4
9. Burdujan, I. Types of nonisomorphic two-dimensional real division algebras. Proceedings of the national conference on algebra (Romania), An. Stiint. Univ., Al. I. Cuza. Iasi Sect. I a Mat., 1985, Suppl., 31, 102–105.
10. Cuenca Mira, J. A., De Los Santos Villodres, R., Kaidi, A., and Rochdi, A. Real quadratic flexible division algebras. Linear Algebra Appl., 1999. 290, 1–22.
doi:10.1016/S0024-3795(98)10113-1
11. Darpö, E. On the classification of the real flexible division algebras. Colloq. Math., 2006, 105(1), 1–17.
doi:10.4064/cm105-1-1
12. Darpö, E. Normal forms for the G2-action on the real symmetric 7 ´ 7-matrices by conjugation. J. Algebra, 2007, 312(2), 668–688.
doi:10.1016/j.jalgebra.2007.03.007
13. Darpö, E. and Dieterich, E. Real commutative division algebras. Algebr. Represent. Theory, 2007, 10(2), 179–196.
doi:10.1007/s10468-006-9040-3
14. Dieterich, E. Zur Klassifikation vierdimensionaler reeller Divisionsalgebren. Math. Nachr., 1998, 194, 13–22.
15. Dieterich, E. Quadratic division algebras revisited. Proc. Amer. Math. Soc., 2000, 128(11), 3159–3166.
doi:10.1090/S0002-9939-00-05445-9
16. Dieterich, E. Classification, automorphism groups and categorical structure of the two-dimensional real division algebras. J. Algebra Appl., 2005, 4, 517–538.
doi:10.1142/S0219498805001307
17. Dieterich, E. and Lindberg, L. Dissident maps on the seven-dimensional Euclidean space. Colloq. Math., 2003, 97(2), 251–276.
doi:10.4064/cm97-2-10
18. Dieterich, E., Fieseler, K.-H., and Lindberg, L. Liftings of dissident maps. J. Pure Appl. Algebra, 2006, 204(1), 133–154.
doi:10.1016/j.jpaa.2005.04.005
19. Doković, D. Ž. and Zhao, K. Real division algebras with large automorphism group. J. Algebra, 2004, 282(2), 758–796.
doi:10.1016/j.jalgebra.2004.03.015
20. Frobenius, F. G. Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math., 1878, 84, 1–63.
doi:10.1515/crll.1878.84.1
21. Gottschling, E. Die zweidimensionalen reellen Divisionsalgebren. Seminarber. Fachb. Math. FernUniversität–GHS in Hagen, 1998, 63, 228–261.
22. Hopf, H. Ein topologischer Beitrag zur reellen Algebra. Comment. Math. Helv., 1940/41, 13, 219–239.
doi:10.1007/BF01378062
23. Hübner, M. and Petersson, H. P. Two-dimensional real division algebras revisited. Beiträge Algebra Geom., 2004, 45(1), 29–36.
24. Kervaire, M. Non-parallelizability of the n-sphere for n > 7. Proc. Nat. Acad. Sci. U.S.A., 1958, 44, 280–283.
doi:10.1073/pnas.44.3.280
25. Lindberg, L. On the doubling of quadratic algebras. Colloq. Math., 2004, 100(1), 119–139.
doi:10.4064/cm100-1-12
26. Osborn, J. M. Quadratic division algebras. Trans. Amer. Math. Soc., 1962, 105, 202–221.
doi:10.2307/1993623
27. Petersson, H. P. The classification of two-dimensional non-associative algebras. Results Math., 2000, 37, 120–154.
28. Rochdi, A. Étude des algèbres réelles de Jordan non commutatives, de division, de dimension 8, don’t l’algèbre de Lie des dérivations n’est pas triviale. J. Algebra, 1995, 178(3), 843–871.
doi:10.1006/jabr.1995.1381
29. Palacios, Á. R. Absolute-valued algebras, and absolute-valuable Banach spaces. In Advanced Courses of Mathematical Analysis I}, pp. 99–155. World Sci. Publ., Hackensack, NJ, 2004.
doi:10.1142/9789812702371_0005
30. Schafer, R. D. An Introduction to Nonassociative Algebras. Dover Publications Inc., New York, 1995. Corrected reprint of the 1966 original.
31. Segre, B. La teoria delle algebre ed alcune questione di realtà. Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. E Appl. (5), 1954, 13, 157–188.
32. Urbanik, K. and Wright, F. B. Absolute-valued algebras. Proc. Amer. Math. Soc., 1960, 11, 861–866.
doi:10.2307/2034425
doi:10.1007/BF02940993