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Some modern developments in the theory of real division algebras
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Abstract. The study of real division algebras was initiated by the construction of the quaternion and the octonion algebras in the
mid-19th century. In spite of its long history, the problem of classifying all finite-dimensional real division algebras is still unsolved.
We review the theory of this problem, with focus on recent contributions.
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1. INTRODUCTION

An algebra over a field k is understood to be a vector space A over k equipped with a bilinear multiplication
map A×A→ A, (a,b) 7→ ab. If A 6= 0, and the linear maps La : A→ A, x 7→ ax and Ra : A→ A, x 7→ xa are
invertible for all a ∈ Ar{0}, then A is called a division algebra. In case A is finite-dimensional, La and Ra
are invertible if and only if they are injective, which happens precisely when A has no non-trivial divisors of
zero (i.e., xy = 0 only if x = 0 or y = 0).

Despite the simple definition, division algebras are highly non-trivial objects. Even when restricting
attention to finite-dimensional division algebras over a fixed field k, a classification is known only when k is
algebraically closed, in which case every such algebra is isomorphic to k itself.

Over the real number field, R itself and the complex numbers C are immediate examples of finite-
dimensional division algebras. For pairs of complex number, one may define a multiplication map
C2×C2 → C2 by

((x1,x2),(y1,y2)) 7→ (x1,x2)(y1,y2) = (x1y1− ȳ2x2 , x2ȳ1 + y2x1). (1)

This multiplication is bilinear over R (though obviously not over C), and it turns out that the real algebra
defined has no non-trivial zero divisors. This is the quaternion algebra H, first considered by Hamilton in
1843 (it may be remarked, however, that the formulae for calculating with quaternions appeared earlier in
works by Euler in 1748 and Gauß in 1819). The map

x = (x1,x2) 7→ x̄ = (x̄1,−x2) (2)

is an involution on H.
Taking x1,x2,y1,y2 to be quaternions, (1) defines a multiplication on H2. The resulting algebra is again

a division algebra, the octonions O, constructed independently by Graves in 1843 and Cayley in 1845. Also
onO, the map defined by (2) is an involution. BothH andO are equipped with scalar products, in each case
given by 〈(x1,x2),(y1,y2)〉= 〈x1,y1〉+ 〈x2,y2〉 and satisfying 〈x,x〉= xx̄.
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Just as O is constructed from H, and H from C, complex numbers may be seen as pairs of real numbers
with multiplication given by (1) (the involution x 7→ x̄ being the identity map onR). The construction carried
out in each of these cases is called the doubling, or the Cayley–Dickson process. As we have seen, C,H, and
O are all constructed from R via iteration of this process. However, the 16-dimensional algebra obtained
from O in this manner is no longer a division algebra.

The four algebras R, C, H, and O are often referred to as the classical real division algebras and they
share several important properties. They all have identity elements, and are absolute valued in the sense
that they possess a norm with respect to which ‖xy‖= ‖x‖‖y‖ for arbitrary elements x and y. A theorem by
Albert [2] asserts that these are, up to isomorphism, the only finite-dimensional absolute-valued algebras1

combining these two properties. Urbanik and Wright [32] extended this result to hold also without the
assumption of finite-dimensionality.

Every associative finite-dimensional real division algebra is isomorphic to one of R, C, and H [20].
Although the octonions fail to be associative, they satisfy the weaker condition of alternativity, meaning
that any subalgebra generated by two elements is associative. Moreover, according to a theorem by Zorn
from 1931 [33], R, C, H, and O classify all finite-dimensional real division algebras that are alternative.

A new era in the theory of real division algebras was launched by Hopf [22] in 1940, when he proved that
a finite-dimensional commutative real division algebra has either dimension one or two, and furthermore,
that the dimension of any real division algebra is either a power of two or infinite. Hopf’s methods were
topological, and inspired other topologists in a development which culminated in 1958 with the (1,2,4,8)-
theorem [8,24], which asserts that any finite-dimensional real division algebra has dimension 1, 2, 4, or 8.

The aim of the present article is to give an overview of some of the developments in the theory
of finite-dimensional real division algebras that have occurred in the last 50 years. The field is still
far from fully discovered. Although the (1,2,4,8)-theorem reduces the number of possible dimensions
to four, classifications of all n-dimensional real division algebras are known only for n ∈ {1,2}. By a
classification we mean a cross-section for the isomorphism classes, i.e., a set of objects in which precisely
one representative for each isomorphism class occurs.

The classification problem for one-dimensional real division algebras is trivial, every such algebra being
isomorphic to R. In Section 2 we outline the solution in the two-dimensional case. Whereas general
classifications are not known for n > 2, there are certain subclasses where the problem has been solved.

Seeking to generalize the theorem of Zorn on real alternative division algebras, one is naturally led to
consider power associative algebras, defined by the property that every subalgebra generated by a single
element is associative. A real finite-dimensional division algebra is power associative if and only if it is
quadratic, that is, if it has an identity element 1 6= 0 and the set {1,x,x2} is linearly dependent for all x
(this follows from the fact that every finite-dimensional power-associative division algebra has an identity
element [30, Lemma 5.3]). Thus, in Section 3 we treat quadratic division algebras over R, describing their
classification in dimension four.

Another property that generalizes alternativity is flexibility. An algebra A is called flexible if any two
elements x,y ∈ A satisfy the identity x(yx) = (xy)x. The classification of all finite-dimensional real flexible
division algebras, which was completed just recently, is discussed in Section 4.

Our survey is partial. For example, we are not going into the theory of absolute valued algebras, which
in finite dimension are division algebras. One reason for this is that an extensive and up-to-date review [29]
already exists, another is that the field is too large to be fairly treated within the scope of a short article as
the present.

Benkart and Osborn [4] determined all Lie algebras that arise as derivation algebras of real finite-
dimensional division algebras. Results towards the classification of all real finite-dimensional division
algebras with a fixed derivation algebra type are found in [5,19,28]. Again, these important contributions
are left out, since they would require more space than what could be afforded here.

To abbreviate notation, from here on we use the word algebra to mean ‘finite-dimensional real algebra’.

1 An absolute-valued algebra is a normed vector space with an algebra structure satisfying the above-mentioned identity.
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2. DIVISION ALGEBRAS OF DIMENSION TWO

The first classification of the two-dimensional division algebras was given by Burdujan [9] in 1985. His
approach is the classical one with multiplication tables and is based on the number of non-zero idempotents
in the algebra in question, which is between one and three [31]. Burdujan’s article contains no proofs. A
similar approach was taken two years earlier in an article by Althoen and Kugler [3], who however failed
to provide a classification in our sense. More recently, a classification along these lines was presented by
Gottschling [21].

Another solution to the classification problem for two-dimensional division algebras is based on the
concept of isotopy, first introduced by Albert [1] in 1942. This approach was pursued by Hübner and
Petersson [23] (using the more general theory for arbitrary two-dimensional algebras developed in [27]),
and independently by Dieterich [16]. Below we shall outline the basic idea of their solution.

Let A be an arbitrary algebra, and S, T , and U invertible linear transformations of A. The algebra
B = (A,∗), with the same underlying vector space as A and multiplication defined by x ∗ y = U((Sx)(Ty)),
is called the isotope of A given by S, T , and U . If U is the identity transformation on A, then B is called
a principal isotope of A. Every isotope of A is isomorphic to a principal isotope, and isotopy defines an
equivalence relation between algebra structures on a given vector space. Clearly, the property of being a
division algebra is preserved under isotopy.

Now let A be a division algebra, and a∈A an arbitrary non-zero element. The linear maps of respectively
left and right multiplication with a are invertible, and one may form the isotope B = (A,◦) of A with
multiplication x◦ y = (R−1

a x)(L−1
a y). Since a2 ◦ x = (R−1

a a2)(L−1
a x) = a(L−1

a x) = LaL−1
a x = x and similarly

x ◦ a2 = x for all x ∈ B, a2 is an identity element in B. Hence every division algebra has an isotope which
is unital.

A two-dimensional unital division algebra B is spanned by the identity element 1 and some element
b ∈ BrR1. Since the commutative and associative laws clearly hold for products of the basis elements, B
is commutative and associative. Thus it is a field extension of R, and as such isomorphic to the complex
numbers.

The group of invertible R-linear transformations of C is denoted by GL(C). For S,T ∈ GL(C), let
CST be the principal isotope of C given by S and T , i.e. CST = (C,∗), with x∗ y = (Sx)(Ty). The previous
discussion implies that every division algebra of dimension two is isomorphic toCST for some S,T ∈GL(C).
Moreover, F ∈ GL(C) is an algebra isomorphism CST → CS′T ′ if and only if F((Sx)(Ty)) = (S′Fx)(T ′Fy)
for all x,y ∈ C.

Next, one can show that the pair (sign(detS),sign(detT )) is an isomorphism invariant for CST . There-
fore, the classification problem decomposes into four subproblems, each of which can be further reduced
and solved by means of elementary Euclidean geometry. For details, see [16].

The classification of all two-dimensional division algebras immediately gives rise to a classification
of all commutative division algebras: the algebra CST is commutative if and only if S = T . In view of
Hopf’s theorem this, together with the fact that R is the only one-dimensional division algebra, renders a
classification in the commutative case. An independent treatment of the commutative division algebras is
given in [13].2

3. QUADRATIC DIVISION ALGEBRAS

An extensive study of quadratic division algebras was carried out by Osborn in [26]. Here we shall
recapitulate his main result, and describe the classification, due to Dieterich3 [14], of all quadratic division
algebras of dimension four.

2 Also [6] deals with commutative division algebras, using isotopy. However, due to a technical mistake, the alleged classifying
list presented in the article misses some isomorphism classes. See [13] for a detailed account.

3 Osborn’s claim to have classified all four-dimensional quadratic division algebras over an arbitrary field F of characteristic
different from two “modulo the theory of quadratic forms over F”, is not accurate. See [15].
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Let V be a finite-dimensional Euclidean space. A dissident map on V is a linear map η : V ∧V → V
with the property that u,v,η(u∧ v) ∈ V are linearly independent whenever u,v ∈ V are. If in addition
ξ : V ∧V → R is a linear form, (V,ξ ,η) is called a dissident triple. By a morphism (V,ξ ,η)→ (V ′,ξ ′,η ′)
is meant an orthogonal map σ : V → V ′ such that η ′(σ ∧σ) = ση and ξ ′(σ ∧σ) = ξ . Denote by Q the
category of quadratic division algebras, and by D the category of dissident triples. If (V,ξ ,η) ∈D , then the
algebra H (V,ξ ,η) = R×V with multiplication defined by

(α,u)(β ,v) = (αβ −〈u,v〉+ξ (u∧ v) , αv+βu+η(u∧ v))

is a quadratic division algebra. For a morphism σ : (V,ξ ,η) → (V ′,ξ ′,η ′) in D , set H (σ) = IR×σ :
H (V,ξ ,η)→H (V ′,ξ ′,η ′). This establishes H as a functor from D to Q.

Proposition 3.1 [17,26]. The functor H : D →Q is an equivalence of categories.

In view of the above proposition, classifying all four-dimensional quadratic division algebras amounts
to classifying all dissident triples (V,ξ ,η) with dimV = 3. In doing this, a key ingredient is the construction
of all dissident maps on three-dimensional Euclidean space.

Let V be a Euclidean space of dimension three, and π a vector product4 on V . Consider a dissident
map η on V . Since dim(V ∧V ) = 3 = dimV , both η and π are bijective linear maps. Now the linear
endomorphism ηπ−1 : V → V is definite, because otherwise there would exist an element u ∈ V r {0}
such that 〈ηπ−1(u),u〉 = 0. Then taking v,w ∈ V such that π(v∧w) = u would give 〈η(v∧w),u〉 = 0,
which implies η(v∧w) ∈ span{v,w}, contradicting the dissidence property of η . This proves that every
dissident map η on V factors as η = επ , where ε : V → V is linear and definite. Conversely, given any
such ε : V → V , the composed map επ : V ∧V → V is dissident. In case ε : V → V is negative definite,
one may write η = επ = ε ′π ′, where ε ′ = −ε is positive definite and π ′ = −π again is a vector product,
isomorphic to π . This means that every dissident map η on V factors uniquely into a positive definite linear
endomorphism and a vector product on V .

Given an antisymmetric linear endomorphism δ of V , let ξδ : V ∧V → R be the form defined by
ξδ (u∧ v) = 〈δ (u),v〉. Clearly, δ 7→ ξδ defines a bijection from the set of antisymmetric linear endo-
morphisms of V to the set of linear forms V ∧V → R. Denote by P the set of pairs (δ ,ε) of linear
endomorphisms on V , in which δ is antisymmetric and ε positive definite. The group SO(V ) acts on P by

σ · (δ ,ε) = (σδσ−1,σεσ−1). (3)

Fix a vector product π on V , and define I (δ ,ε) = (V,ξδ ,επ) for (δ ,ε) ∈P . Let D3 be the category of
dissident triples (W,ξ ,η) satisfying dimW = 3. Taking into account the above discussion, one can verify
the following proposition.

Proposition 3.2. The assignment I defines an equivalence from the category of the group action5 (3) to
D3, acting as identity on morphisms.

Propositions 3.1 and 3.2 reduce the classification problem for the quadratic division algebras of
dimension four to the problem of finding a normal form for P under the action of SO(V ) given by (3).
A solution to this problem is described in [14].

As for dissident triples in seven-dimensional space (or equivalently, eight-dimensional quadratic division
algebras), one is still far from a solution of the classification problem. Factorization of a dissident map into a
vector product and a definite linear endomorphism is no longer possible in general. The most notable result
here is the classification of all dissident triples corresponding to flexible algebras, which is described in the
next section. Other contributions are [17,18,25].

4 A vector product is a dissident map π with the property that u,v,π(u∧ v) ∈ V are orthonormal whenever u,v ∈ V are. Vector
products exist in dimension 0, 1, 3, and 7 only, and are unique up to isomorphism in each dimension.

5 Given a group G acting on a set X , the category of the action has object set X , and morphism sets Mor(x,y) = {g∈G | g ·x = y}.
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4. FLEXIBLE DIVISION ALGEBRAS

The first major contribution to the theory of flexible division algebras was the article [7] by Benkart, Britten,
and Osborn in 1982. It separates the class of such algebras into three disjoint subclasses. To state their main
theorem, some additional notation is required.

Let B = H (V,ξ ,η) ∈Q, and λ ∈ Rr{0}. We define fλ to be the linear endomorphism of B = R×V
defined by fλ (α,v) = (α,λv). Now the scalar isotope of B determined by λ , denoted λ B, is the principal
isotope of B given by fλ in both arguments, that is, λ B = (B,∗) with multiplication x∗y = fλ (x) fλ (y). This
is a flexible division algebra whenever B is.

The real vector space su3C of anti-hermitean complex 3× 3-matrices with trace zero is a Lie algebra
under the commutator multiplication [ , ]. For each δ ∈ Rr{0}, su3C with multiplication x ? y = δ [x,y]+
i
2

(
xy+ yx− 2

3 tr(xy)I3
)

is a flexible division algebra of dimension eight, denoted Oδ . The algebras of this
type are called generalized pseudo-octonions.

Theorem 4.1 [7, Theorem 1.4]. Every flexible division algebra is either
1. commutative,
2. a scalar isotope of a quadratic flexible division algebra of dimension four or eight, or
3. a generalized pseudo-octonion algebra.
The different cases are mutually exclusive.

In [11] it was proved that two scalar isotopes λ A and µB of quadratic flexible division algebras are
isomorphic if and only if µ = λ and A ' B, and that Oδ ' Oδ ′ if and only if δ = ±δ ′. As we saw in
Section 2, the commutative division algebras have already been classified. Hence, to classify all flexible
division algebras, it remains to consider the ones which are both flexible and quadratic.

Let Qfl be the category of flexible quadratic division algebras, and Dfl the corresponding (under H )
dissident triples. A dissident triple (V,ξ ,η) is in Dfl precisely when ξ = 0 and 〈η(u∧ v),u〉 = 0 for
all u,v ∈ V [26, p. 203]. Using the theory developed in Section 3, it is not difficult to show that
{(V,0,λπ)}λ>0, where π is a vector product on a three-dimensional space V that classifies Dfl

3 = D3∩Dfl.
Thus {H (V,0,λπ)}λ>0 classifies the four-dimensional flexible quadratic division algebras.

The eight-dimensional case has been studied by Cuenca Mira et al. [10]. In their deeply technical paper,
they construct all flexible quadratic division algebras of dimension eight, and establish a necessary and
sufficient criterion for when two such algebras are isomorphic. We shall formulate their principal theorem
in the language of dissident triples.

Let π be a vector product on a seven-dimensional Euclidean space V , and denote by Pds(V ) the set of
positive definite symmetric linear endomorphisms of V . The automorphism group Aut(π) = Aut(V,0,π) of
the dissident triple (V,0,π) is isomorphic to the exceptional Lie group G2. It is a subgroup of O(V ), and
hence conjugation with elements in Aut(π) defines an action on Pds(V ):

Aut(π)×Pds(V )→ Pds(V ), (σ ,δ ) 7→ σ ·δ = σδσ−1. (4)

Denote Dfl
7 = D7∩Dfl, where D7 is the category of dissident triples (W,ξ ,η) for which dimW = 7.

Theorem 4.2 (cf. [10, Theorem 5.7]). The category Dfl
7 is equivalent to the category A of the group action

(4). An equivalence J : A → Dfl
7 is given by J (δ ) = (V,0,δπ(δ ∧ δ )) for objects δ ∈ Pds(V ) and

J (σ) = σ for morphisms σ ∈ Aut(π).

Thus, if N ⊂ Pds(V ) is a cross-section for the orbit set of (4), then HJ (N )⊂Qfl is a cross-section
for the isomorphism classes of the eight-dimensional flexible quadratic division algebras. The normal form
problem posed here requires, in contrast to the ones encountered in previous sections, additional theory and
technical considerations.

A Cayley triple in V is a triple (u,v,z) ∈V 3 such that u,v,π(u∧v),z ∈V are orthonormal. Every Cayley
triple c = (u,v,z) determines an orthonormal basis bc = (u, v, π(u∧v), z, π(u∧ z), π(v∧ z), π(π(u∧v)∧ z))
to V . Denote by C the set of Cayley triples in V , and by [T ]c the matrix of a linear endomorphism T of
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V with respect to the basis bc determined by c ∈ C . The group Aut(π) acts simply transitively on C via
σ · (u,v,z) = (σ(u),σ(v),σ(z)), i.e., given two Cayley triples c and c′, there exists a unique σ ∈ Aut(π)
such that σ · c = c′. Hence, fixing a triple s ∈ C gives a bijection Aut(π)→ C , σ 7→ σ · s.

For all δ ∈ Pds(V ), the task now is to choose Cayley triples c in V in such a way that the resulting
matrices [δ ]c are the same within the orbits of action (4). Then the normal form of δ is the endomorphism
which, in the basis bs, is given by the matrix [δ ]c.

The set p(δ ) = {(λ ,dimker(δ − λ IV )) | ker(δ − λ IV ) 6= 0)} is an invariant for the orbit of δ under
Aut(π). This yields a decomposition of the normal form problem for (4) into 15 different subproblems,
determined by the dimensions of the eigenspaces of δ . These subproblems are treated in [12], and the
classification of all flexible division algebras thereby obtained.
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20. Frobenius, F. G. Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math., 1878, 84, 1–63.
21. Gottschling, E. Die zweidimensionalen reellen Divisionsalgebren. Seminarber. Fachb. Math. FernUniversität–GHS in Hagen,

1998, 63, 228–261.
22. Hopf, H. Ein topologischer Beitrag zur reellen Algebra. Comment. Math. Helv., 1940/41, 13, 219–239.
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Reaalsete jagamisega algebrate teooria tänapäevastest arengutest

Erik Darpö

Reaalsete jagamisega algebrate uurimine algas 19. sajandi keskel seoses kvatern- ja oktonioonsete algebrate
kasutuselevõtuga. Pikale ajaloole vaatamata on kõigi lõplikumõõtmeliste reaalsete jagamisega algebrate
klassifitseerimine senini lõpetamata. Artiklis on antud sellest probleemist ülevaade, keskendudes viimastele
tulemustele.


