1. Borwein, D. Generalized Hausdorff and weighted mean matrices as bounded operators on lp. Math. Z., 1983, 183, 483–487.
doi:10.1007/BF01173925
2. Borwein, D. Nörlund operators on lp. Canad. Math. Bull., 1993, 36, 8–14.
3. Borwein, D. Simple conditions for matrices to be bounded operators on lp. Canad. Math. Bull., 1998, 41, 10–14.
4. Borwein, D. Weighted mean operators on lp. Canad. Math. Bull., 2000, 43, 406–412.
5. Borwein, D. and Cass, F. P. Nörlund matrices as bounded operators on lp. Arch. Math., 1984, 42, 464–469.
doi:10.1007/BF01190697
6. Borwein, D. and Gao, X. Generalized Hausdorff and weighted mean matrices as operators on lp. J. Math. Anal. Appl., 1993, 178, 517–528.
doi:10.1006/jmaa.1993.1322
7. Borwein, D. and Gao, X. Matrix operators on lp to lq. Canad. Math. Bull., 1994, 37, 448–456.
8. Borwein, D. and Jakimovski, A. Matrix operators on lp. Rocky Mountain J. Math., 1979, 9, 463–477.
9. Cass, F. P. Convexity theorems for Nörlund and strong Nörlund summability. Math. Z., 1968, 112, 357–363.
doi:10.1007/BF01110230
10. Cass, F. P. and Kratz, W. Nörlund and weighted mean matrices as operators on lp. Rocky Mountain J. Math., 1990, 20, 59–74.
doi:10.1216/rmjm/1181073159
11. Hardy, G. H. An inequality for Hausdorff means. J. London Math. Soc., 1943, 18, 46–50.
doi:10.1112/jlms/s1-18.1.46
12. Jakimovski, A., Rhoades, B. E., and Tzimbalario, J. Hausdorff matrices as bounded operators over lp. Math. Z., 1974, 138, 173–181.
doi:10.1007/BF01214233
13. Kiesel, R. General Nörlund transforms and power series methods. Math. Z., 1993, 214, 273–286.
doi:10.1007/BF02572404
14. Kiesel, R. On scales of summability methods. Math. Nachr., 1995, 176, 129–138.
doi:10.1002/mana.19951760110
15. Kiesel, R. The law of the iterated logarithm for certain power series and generalized Nörlund methods. Math. Proc. Camb. Phil. Soc., 1996, 120, 735–753.
doi:10.1017/S0305004100001687
16. Kiesel, R. and Stadtmüller, U. Tauberian and convexity theorems for certain (N, p, q)-means. Can. J. Math., 1994, 46, 982–994.
17. Sinha, R. Convexity theorem for (N, p, q) summability. Kyungpook Math. J., 1973, 13, 37–40.
19. Stadtmüller, U. and Tali, A. On some families of certain Nörlund methods and power series methods. J. Math. Anal. Appl., 1999, 238, 44–66.
doi:10.1006/jmaa.1999.6503
20. Stadtmüller, U. and Tali, A. Comparison of certain summability methods by speeds of convergence. Anal. Math., 2003, 29, 227–242.
doi:10.1023/A:1025419305735
21. Tali, A. Convexity conditions for families of summability methods. Tartu Ülik. Toimetised, 1993, 960, 117–138.