

Proceedings of the Estonian Academy of Sciences, 2009, **58**, 3, 137–145 doi: 10.3176/proc.2009.3.01 Available online at www.eap.ee/proceedings

MATHEMATICS

A note on families of generalized Nörlund matrices as bounded operators on l_p

Ulrich Stadtmüller^a and Anne Tali^{b*}

^a Department of Number Theory and Probability Theory, Ulm University, 89069 Ulm, Germany

^b Department of Mathematics, Tallinn University, Narva mnt. 25, 10120 Tallinn, Estonia

Received 11 December 2008, revised 21 January 2009, accepted 21 January 2009

Abstract. We deal with generalized Nörlund matrices $A = (N, p_n, q_n)$ defined by means of two non-negative sequences (p_n) and (q_n) with $p_0, q_0 > 0$. We are interested in simple conditions such that the associated non-negative triangular matrix $A = (a_{nk})$ is a bounded linear operator on l_p (1 . Using results of D. Borwein (*Canad. Math. Bull.*, 1998,**41** $, 10–14), we provide sufficient conditions and bounds for the norm <math>||A||_p$. Our main question is whether certain families of generalized Nörlund matrices $A_{\alpha} = (N, p_n^{\alpha}, q_n)$ studied by different authors (see, e.g., *Anal. Math.*, 2003, **29**, 227–242; *Math. Z.*, 1993, **214**, 273–286) are bounded linear operators on l_p . These matrices need not satisfy the sufficient conditions given by Borwein in the paper mentioned above. Explicit bounds for the norms $||A_{\alpha}||_p$ are given.

Key words: operator theory, Banach space l_p , bounded linear operators, generalized Nörlund matrices, Nörlund, Riesz and Euler-Knopp matrices.

1. INTRODUCTION AND PRELIMINARIES

1.1. Suppose throughout the paper that

$$1$$

Suppose also that $A = (a_{nk})$ is a triangular matrix of non-negative real numbers, that is, $a_{nk} \ge 0$ for $n, k \ge 0$, and $a_{nk} = 0$ for $n > k, n, k \in \mathbb{N}_0$. Let l_p be the Banach space of all complex sequences $x = (x_n)$ $(n \in \mathbb{N}_0)$ with the norm

$$||x||_p = \left(\sum_{n=0}^{\infty} |x_n|^p\right)^{1/p} < \infty,$$

and let $B(l_p)$ be the Banach algebra of all bounded linear operators on l_p . Thus $A \in B(l_p)$ if and only if $Ax \in l_p$ whenever $x \in l_p$, where $Ax = (y_n)$ with

$$(Ax)_n = y_n = \sum_{k=0}^n a_{nk} x_k.$$

^{*} Corresponding author, atali@tlu.ee

Let

$$|A||_p = \sup_{\|x\|_p \le 1} \|Ax\|_p,$$

so that $A \in B(l_p)$ if and only if $||A||_p < \infty$, in which case $||A||_p$ is the norm of A.

It is well known that A is a bounded operator on the Banach space m of bounded sequences if and only if

$$\sup_{n\in\mathbb{N}_0}\sum_{k=0}^n a_{nk}<\infty$$

This condition, together with

$$\lim_{n} a_{nk} = 0 \text{ for any } k \in \mathbb{N}_0,$$

is necessary and sufficient for *A* to be a bounded operator on the Banach space c_0 . But even on these two conditions *A* need not be a bounded operator on l_p . As an example the Nörlund method $A = (N, e^{n^{\varphi}})$ with $0 < \varphi < 1$ can be given (see [5]). Also, the Riesz weighted mean matrix $A = (\overline{N}, \frac{1}{n+1})$ is not a bounded operator on l_p because the necessary condition

$$\sum_{n=0}^{\infty} (a_{nk})^p < \infty \quad (k \in \mathbb{N}_0)$$

for A to be bounded on l_p is not satisfied for it.

1.2. The problem of characterizing matrices in $B(l_p)$ by means of conditions that are not complicated and difficult to apply has been discussed in a number of papers. This problem was discussed, for example, by D. Borwein and other mathematicians in papers [3,7,8] in general and, in particular, for Nörlund, Riesz weighted mean and Hausdorff matrices in [1–6,10,12]. In these papers different types of conditions (mostly sufficient) for *A* to be in $B(l_p)$ were proved and illustrated with examples, also estimates for the norm $||A||_p$ were found. It should be mentioned that already in 1943 G. H. Hardy proved (see [11]) an inequality which says that the Cesàro matrices $A = (C, \alpha)$ and the Euler–Knopp matrices $A = (E, \alpha)$ ($\alpha > 0$) are in $B(l_p)$ and that $||A||_p = \frac{\Gamma(1+\alpha)\Gamma(1/q)}{\Gamma(\alpha+1/q)}$ and $||A||_p = (\alpha+1)^{1/p}$, respectively.

1.3. We consider in our paper generalized Nörlund matrices.

Suppose throughout the paper that (p_n) and (q_n) are two non-negative sequences such that $p_0, q_0 > 0$ and

$$r_n = \sum_{k=0}^n p_{n-k} q_k \neq 0$$
 for any $n \in \mathbb{N}_0$.

Let us consider the qeneralized Nörlund matrix $A = (N, p_n, q_n)$, i.e., the matrix $A = (a_{nk})$ with

$$a_{nk} = \begin{cases} \frac{p_{n-k} q_k}{r_n} & \text{if } 0 \le k \le n, \\ 0 & \text{if } k > n. \end{cases}$$

In particular, if $q_n = 1$ for any $n \in \mathbb{N}_0$, then we get the Nörlund matrix $(N, p_n, 1) = (N, p_n)$. If $p_n = 1$ for any $n \in \mathbb{N}_0$, then we get the Riesz matrix $(N, 1, q_n) = (\overline{N}, q_n)$. In particular, if $p_n = \frac{\alpha^n}{n!}$ ($\alpha > 0$) and $q_n = \frac{1}{n!}$, we have the Euler–Knopp matrices $(N, p_n, q_n) = (E, \alpha)$.

The most convenient conditions to show that the matrix $A = (N, p_n, q_n)$ is in $B(l_p)$ come from the following theorem of D. Borwein (see [3], Theorem 2) proved for $A = (a_{nk})$.

Theorem A. Suppose that $A = (a_{nk})$ satisfies the conditions

$$M_1 = \sup_{n \in \mathbb{N}_0} \sum_{k=0}^n a_{nk} < \infty \tag{1.1}$$

138

U. Stadtmüller and A. Tali: Generalized Nörlund matrices as bounded operators on lp

and

$$a_{nk} \le M_2 a_{nj} \quad for \quad 0 \le k \le j \le n, \tag{1.2}$$

where M_2 is a positive number independent of k, j, n.

Then $A \in B(l_p)$ and

$$\max\left\{a_{00}, \frac{\lambda q}{M_2}\right\} \le \|A\|_p \le q M_1 M_2^{q-1},\tag{1.3}$$

where $\lambda = \liminf na_{n0}$.

Notice that (N, p_n, q_n) satisfies (1.1) with $M_1 = 1$. Thus Theorem A gives the following immediate corollary.

Corollary 1. If (p_n) is non-increasing and (q_n) is non-decreasing, then $A = (N, p_n, q_n) \in B(l_p)$ and (1.3) holds with $a_{00} = M_1 = M_2 = 1$.

Example 1. If $A = (N, \frac{1}{n+1}, \log(n+2))$ or $A = (N, \frac{1}{n!}, \log(n+2))$, then $A \in B(l_p)$ and $\max\{1, \lambda q\} \le ||A||_p \le q$ by Corollary 1.

1.4. The main idea of our paper is to show that on the basis of a given matrix $A = (N, p_n, q_n) \in B(l_p)$ the families of matrices A_{α} being in $B(l_p)$ can be constructed, where α is a continuous or discrete parameter. Proving Theorems 1 and 2, we will find out some families of matrices $A_{\alpha} = (N, p_n^{\alpha}, q_n)$ (see, e.g., [19] and [13]) which are in $B(l_p)$ if (N, p_n, q_n) is in $B(l_p)$. It should be mentioned that if $A = (N, p_n, q_n)$ satisfies the conditions of Corollary 1, then the matrices $A_{\alpha} \in B(l_p)$ in Theorems 1 and 2 need not satisfy these conditions any more. In other words, (p_n^{α}) need not be non-increasing any more (if (p_n) is), but nevertheless A_{α} are bounded operators on l_p .

1.5. We need also the preliminaries below.

The following theorem was published by Borwein in [3] as Theorem 1.

Theorem B. Suppose that $A = (a_{nk})$ satisfies conditions (1.1),

$$M_{3} = \sup_{0 \le k \le n/2, n \in \mathbb{N}_{0}} (n+1)a_{nk} < \infty,$$
(1.4)

and

$$M_4 = \sup_{k \in \mathbb{N}_0} \sum_{n=k}^{2k} a_{nk} < \infty.$$

$$(1.5)$$

Then $A \in B(l_p)$ and

$$\|A\|_{p} \le \mu_{1}^{1/q} \mu_{2}^{1/p}, \tag{1.6}$$

where

$$\mu_1 \le 2^{1/p} M_1 + q M_3 \tag{1.7}$$

and

$$\mu_2 \le M_4 + qM_3. \tag{1.8}$$

We will use also the following simple proposition.

Proposition A. Let A_1 and A_2 be two matrices and $A = A_2A_1$ their product. If $A_1 \in B(l_p)$ and $A_2 \in B(l_p)$, then also $A \in B(l_p)$ and

$$||A||_{p} \leq ||A_{2}||_{p} ||A_{1}||_{p}.$$

2. SOME REMARKS ON GENERALIZED NÖRLUND MATRICES (N, p_n, q_n) AS BOUNDED OPERATORS ON l_p

2.1. First we notice that Corollary 1 can be slightly generalized.

If (p_n) satisfies the condition

$$C_1 a_n \le p_n \le C_2 a_n \quad (n \in \mathbb{N}_0), \tag{2.1}$$

where (a_n) is some non-negative sequence and C_1 and C_2 are positive numbers not depending on n, we write $p_n \approx a_n$. If, in addition, (a_n) is non-decreasing, then (p_n) is said to be almost non-decreasing. If $p_n \approx a_n$ and (a_n) is non-increasing, then (p_n) is said to be almost non-increasing.

Thus, if

$$D_1 b_n \le q_n \le D_2 b_n \quad (n \in \mathbb{N}_0), \tag{2.2}$$

where (b_n) is some non-decreasing sequence and D_1 and D_2 are positive constants, then (q_n) is almost non-decreasing.

Now the following corollary from Theorem A improves Corollary 1.

Corollary 2. Suppose that (p_n) is almost non-increasing and (q_n) is almost non-decreasing, i.e., that (2.1) and (2.2) hold with some non-increasing (a_n) and non-decreasing (b_n) , respectively. Then $A = (N, p_n, q_n) \in B(l_p)$ and the estimate in (1.3) for the norm $||A||_p$ is valid with $M_1 = a_{00} = 1$ and $M_2 = \frac{C_2 D_2}{C_1 D_1}$.

Proof. We have the inequalities

$$p_n \ge C_1 a_n \ge C_1 a_j \ge \frac{C_1}{C_2} p_j$$

and

$$q_n \leq D_2 b_n \leq D_2 b_j \leq \frac{D_2}{D_1} q_j$$

for any $n \leq j$. Thus condition (1.2) is satisfied and our statement is true by Theorem A.

Example 2. If $p_n = \frac{\alpha^n}{n!}$ and $q_n = \log(n+2)$, where $\alpha > 0$, then $(N, p_n, q_n) \in B(l_p)$ by Corollary 2 because (p_n) is almost non-increasing.

2.2. Applying Theorem B to (N, p_n, q_n) , we get the following result.

Corollary 3. Suppose that

$$K_1 = \sup_{0 \le k \le n, n \in \mathbb{N}_0} \frac{q_k P_n}{r_n} < \infty$$
(2.3)

and

$$K_2 = \sup_{n \in \mathbb{N}_0} \frac{(n+1)p_n}{P_n} < \infty, \tag{2.4}$$

where $P_n = \sum_{k=0}^n p_k$.

Then $A = (N, p_n, q_n) \in B(l_p)$ and the norm $||A||_p$ satisfies (1.6), where

$$\mu_1 \le 2^{1/p} + 2qK_1K_2 \tag{2.5}$$

and

$$\mu_2 \le K_1 + 2qK_1K_2. \tag{2.6}$$

Proof. Let us show that conditions (1.1), (1.4), and (1.5) are satisfied. We know that (1.1) is satisfied with $M_1 = 1$. Further, with the help of (2.3) we get:

$$\sum_{n=k}^{2k} a_{nk} \leq K_1 \sum_{n=k}^{2k} \frac{p_{n-k}}{P_n} \leq \frac{K_1}{P_k} \sum_{n=k}^{2k} p_{n-k} = K_1.$$

U. Stadtmüller and A. Tali: Generalized Nörlund matrices as bounded operators on lp

Thus, (1.5) is satisfied with $M_4 \leq K_1$. Finally, using (2.3) and (2.4), we get for all $0 \leq k \leq n/2$:

$$(n+1)a_{nk} = \frac{(n+1)p_{n-k}q_k}{r_n} \le K_1 \frac{(n+1)p_{n-k}}{P_n} = K_1 \frac{(n+1-k)p_{n-k}}{P_{n-k}} \frac{P_{n-k}}{P_n} \frac{n+1}{n-k+1}$$
$$\le K_1 K_2 \frac{2(n+1)}{n+2} \le 2K_1 K_2.$$

Thus also (1.4) is satisfied with $M_3 \le 2K_1K_2$. So we have by Theorem B that inequality (1.6) holds together with (2.5) and (2.6), which come from (1.7) and (1.8), respectively.

We add some remarks to Corollary 3.

Remark 1. In particular, if $q_n = 1$ for all $n \in \mathbb{N}_0$, then (2.3) is satisfied and $K_1 = 1$. For this partial case Corollary 3 was proved in [3] as Example 1.

Example 3. If $p_n = 1$ $(n \in \mathbb{N}_0)$ and

$$q_n = \begin{cases} 1 & \text{if } n \text{ is even,} \\ 0 & \text{if } n \text{ is odd,} \end{cases}$$

then $A = (N, p_n, q_n) \in B(l_p)$ by Corollary 3 because conditions (2.3) and (2.4) are satisfied.

Example 4. Suppose that $p_n \approx n^{\alpha-1}L_1(n)$ and $q_n \approx n^{\delta}L_2(n)$, where $\alpha > 0$, $\delta \ge 0$, $L_1(.)$ and $L_2(.)$ are slowly varying functions and $L_2(.)$ is non-decreasing. Let us show that $A = (N, p_n, q_n) \in B(l_p)$. We have that (q_n) is almost non-decreasing,

$$r_n \approx n^{\alpha+\delta} L_1(n) L_2(n)$$

and

$$P_n = \sum_{k=0}^n p_k \approx n^{\alpha} L_1(n)$$

(see [13,15]. Thus (2.3) and (2.4) are satisfied and $A \in B(l_p)$ by Corollary 3.

Example 5. If $q_n = 1$ and

$$p_n = \begin{cases} 1 & \text{if } n = m^2, \ m \in \mathbb{N}, \\ 0 & \text{otherwise}, \end{cases}$$

then neither the conditions of Corollary 2 nor the conditions of Corollary 3 are satisfied but nevertheless $(N, p_n, q_n) \in B(l_p)$ (see [2]).

2.3. The following corollary comes from Proposition A.

Corollary 4. Let $A_1 = (N, p_n^1, q_n^1) \in B(l_p)$ and $A_2 = (N, p_n^2, r_n^1) \in B(l_p)$.

(i) *Then also* $A = (N, (p_2 * p_1)_n, q_n^1) \in B(l_p)$ *and*

$$||A||_{p} \leq ||A_{2}||_{p} ||A_{1}||_{p}.$$

(ii) In particular, if the sequences $p_1 = (p_n^1)$ and $p_2 = (p_n^2)$ are non-increasing and (q_n^1) is non-decreasing, then

$$\|A\|_p \le q^2.$$

Proof. As A is the product of matrices

$$A = (N, (p_2 * p_1)_n, q_n^1) = (N, p_n^2, r_n^1) (N, p_n^1, q_n^1),$$

then statement (i) is true by Proposition A and statement (ii) follows from (i) because by Corollary 1 we have for this particular case the inequalities $||A_1||_p \le q$ and $||A_2||_p \le q$.

3. SOME FAMILIES OF MATRICES BEING BOUNDED OPERATORS ON l_p

We consider here some families of matrices

$$A_{\alpha} = (N, p_n^{\alpha}, q_n),$$

where α is a continuous or discrete parameter. These families of matrices have been studied in different papers (see, e.g., [9,13,14,16–20] on different levels of generality from the point of view of summability of sequences $x = (x_n)$.

Applying Corollaries 2–4, we find the sufficient conditions for $A_{\alpha} \in B(l_p)$ but do not focus on proving estimates for the norms $||A_{\alpha}||_p$.

Theorem 1. Let $A_{\alpha} = (N, p_n^{\alpha}, q_n)$ be generalized Nörlund matrices, where α is a continuous parameter with values $\alpha > 0$ and

$$p_n^{\alpha} = \sum_{k=0}^n c_{n-k}^{\alpha} p_k,$$

where (c_n^{α}) is either

(i)
$$c_n^{\alpha} = A_n^{\alpha-1} = \binom{n+\alpha-1}{n}, \quad n \in \mathbb{N}_0,$$

or

(ii)
$$c_n^{\alpha} = \frac{\alpha^n}{n!}, \quad n \in \mathbb{N}_0.$$

If $A = (N, p_n, q_n) \in B(l_p)$ and (r_n) is almost non-decreasing, then also $(N, p_n^{\alpha}, q_n) \in B(l_p)$ for any $\alpha > 0$. In particular, if (r_n) is non-decreasing, then in case (i) the inequality $||A_{\alpha}||_p \leq q^{\lceil \alpha \rceil + 1} ||A||_p$ holds, where $\lceil \alpha \rceil$ is the integer part of α . More precisely, in this case $||A_{\alpha}||_p \leq q^{\alpha} ||A||_p$ if $\alpha \in \mathbb{N}$.

We prove the theorem first for the special case if $p_0 = 1$ and $p_n = 0$ for any $n \in \mathbb{N}$.

Lemma. Let us suppose that $A_{\alpha} = (N, c_n^{\alpha}, q_n)$, where α is a continuous parameter with values $\alpha > 0$, (q_n) is almost non-decreasing, and c_n^{α} is defined as in Theorem 1 in both cases (i) and (ii). Then $A_{\alpha} \in B(l_p)$ for any $\alpha > 0$.

In particular, if (q_n) is non-decreasing, then

$$\|A_{\alpha}\|_{p} \le q^{[\alpha]+1} \quad (\alpha > 0) \tag{3.1}$$

in case (i). More precisely,

$$\|A_{\alpha}\|_{p} \leq q^{\alpha} \quad (\alpha \in \mathbb{N}).$$

$$(3.2)$$

Proof. For case (ii) notice that the sequence (c_n^{α}) is almost non-increasing and thus $A_{\alpha} \in B(l_p)$ by Corollary 2.

In case (i) we choose some $\alpha > 0$ and show that $A_{\alpha} \in B(l_p)$ and that (3.1) and (3.2) hold in our particular case. If $\alpha \le 1$, then $c_n^{\alpha} = A_n^{\alpha-1}$ is non-increasing and our statement is true by Corollary 2.

U. Stadtmüller and A. Tali: Generalized Nörlund matrices as bounded operators on lp

If $\alpha > 1$, then $r_n^{\alpha} = \sum_{k=0}^n A_{n-k}^{\alpha-1} q_k$ is increasing. We use the equality

$$(N, A_n^{\alpha-1}, q_n) = (N, A_n^{\alpha-\delta-1}, r_n^{\delta}) (N, A_n^{\delta-1}, q_n) \quad (\alpha > 0, \delta \ge 0)$$

(see, e.g., [19]). Taking $\delta = 1$, we can represent $A_{[\alpha]}$ in the form of the product

$$A_{[\alpha]} = (N, A_n^0, r_n^{[\alpha]-1}) \dots (N, A_n^0, r_n^2) (N, A_n^0, r_n^1) (N, A_n^{1-1}, q_n).$$
(3.3)

The right side of equality (3.3) is a product of $[\alpha]$ matrices. As $A_n^0 = 1$, each of these matrices is in $B(l_p)$ by Corollary 2 and therefore $A_{[\alpha]} \in B(l_p)$ by Proposition A. In particular, if (q_n) is non-decreasing, then each of the factors in the right side of equality (3.3) has a norm not greater than q by Corollary 1. As a result, we get the inequality

$$\|A_{[\alpha]}\|_p \leq q^{[\alpha]}$$

in this particular case by Proposition A again. Thus, for $\alpha = [\alpha]$ our statement is proved. For $\alpha > 1$ in general we have the equality

$$A_{\alpha} = (N, A_n^{\alpha - \lfloor \alpha \rfloor - 1}, r_n^{\lfloor \alpha \rfloor}) A_{\lfloor \alpha \rfloor}$$

As both factors in the right side of the last equality are in $B(l_p)$ and the norm of the first of them is not greater than q, A_{α} is in $B(l_p)$, and also inequality (3.1) holds in the particular case by Proposition A.

Proof of Theorem 1. We have the equality

$$(N, p_n^{\alpha}, q_n) = (N, c_n^{\alpha}, r_n)(N, p_n, q_n)$$

for any $\alpha > 0$, where the right side is the product of matrices. As (r_n) is almost non-decreasing, $(N, c_n^{\alpha}, r_n) \in B(l_p)$, and also (3.1) and (3.2) hold in the particular case by Lemma. Thus our statement is true by Proposition A.

Example 6. If $A = (N, p_n, q_n)$ is defined as in Examples 1, 2, 3, or 5, then $(N, p_n^{\alpha}, q_n) \in B(l_p)$ for any $\alpha > 0$ by Theorem 1, because $(N, p_n, q_n) \in B(l_p)$ and (r_n) is non-decreasing in these cases.

Remark 2. The best-known special cases of the matrices (N, p_n^{α}, q_n) given in Theorem 1 in case (i) are the Cesàro matrices (C, α) , where $p_n = \delta_{0n}$ and $q_n = 1$, and the generalized Cesàro matrices (C, α, γ) , where $p_n = \delta_{0n}$ and $q_n = \binom{n+\gamma}{n}$. An example of case (ii) is given by Euler–Knopp matrices (E, α) with $p_n = \delta_{0n}$ and $q_n = 1/n!$.

Theorem 2. Consider the matrices $A_{\alpha} = (N, p_n^{\alpha}, q_n) = (N, p_n^{*\alpha}, q_n)$ with the discrete parameter $\alpha \in \mathbb{N}$ defined by the convolutions $p^{*1} = (p_n)$ and $(p_n^{\alpha}) = p^{*\alpha} = (p_n^{*\alpha}) = p^{*1} * p^{*(\alpha-1)}$ for any $\alpha = 2, 3, ...$

(i) $p_n \approx n^{\delta_1} L_1(n)$ and $q_n \approx n^{\delta_2} L_2(n)$, where $\delta_1 > -1$, $\delta_2 \ge 0$, $L_1(.)$ and $L_2(.)$ are slowly varying functions and $L_2(.)$ is non-decreasing,

or

(ii) (p_n) is almost non-increasing and (q_n) is almost non-decreasing, then $A_{\alpha} \in B(l_p)$ for any $\alpha \in \mathbb{N}$. In particular, if (p_n) is non-increasing and (q_n) is non-decreasing, then $||A_{\alpha}||_p \leq q^{\alpha}$.

Proof. In case (i) we have $p_n^{*\alpha} \approx n^{\alpha \delta_1 + \alpha - 1} L_1^{\alpha}(n)$, where $L_1^{\alpha}(.)$ is also a slowly varying function (see [13]). Thus $A_{\alpha} \in B(l_p)$ as was shown in Example 4.

In case (ii) we use the equality

$$(N, p_n^{*(\alpha+1)}, q_n) = (N, p_n, r_n^{\alpha})(N, p_n^{*\alpha}, q_n),$$

(. 1)

where $r_n^{\alpha} = \sum_{k=0}^n p_{n-k}^{*\alpha} q_k$ is almost non-decreasing because (q_n) is almost non-decreasing. As $(N, p_n, q_n) \in B(l_p)$ and $(N, p_n, r_n^{\alpha}) \in B(l_p)$ for any $\alpha \in \mathbb{N}$ by Corollary 2, the relation $A_{\alpha} \in B(l_p)$ and also the estimate of the norm $||A_{\alpha}||_p$ follow from Corollary 4 by induction.

143

Remark 3. We note that the matrices $A_{\alpha} = (N, p_n^{\alpha}, q_n)$, which satisfy the conditions of Theorems 1 or 2 and are therefore bounded operators on l_p , need not satisfy the conditions neither of Corollary 2 (Theorem A) nor of Corollary 3 (Theorem B). For example, if (p_n) is an almost non-increasing sequence, then (p_n^{α}) need not be almost non-increasing any more. Moreover, (p_n^{α}) is non-decreasing for any $\alpha \ge 1$ in case (i) of Theorem 1.

We finish our paper with an application of Corollary 3.

Theorem 3. Suppose that $A_{\alpha} = (N, p_n^{\alpha}, q_n)$ ($\alpha > 0$) are the same matrices as in Theorem 1 in case (i). If (p_n) satisfies condition (2.4), (q_n) is almost non-decreasing and satisfies the condition

$$(n+1)q_n = O(Q_n),$$

then $A_{\alpha} \in B(l_p)$ for any $\alpha > 0$.

Proof. We apply Corollary 3 to the methods (N, p_n^{α}, q_n) (instead of the methods (N, p_n, q_n)). We know that $p_n^{\alpha+1} = \sum_{k=0}^n p_k^{\alpha} = O(n^{\alpha}P_n)$ and $P_nQ_n = O(n^{1-\alpha}r_n^{\alpha})$ (see [18]). Thus condition (2.3) is satisfied:

$$\frac{q_k p_n^{\alpha+1}}{r_n^{\alpha}} = O\left(\frac{q_n p_n^{\alpha+1}}{r_n^{\alpha}}\right) = O\left(\frac{Q_n P_n n^{\alpha}}{(n+1)r_n^{\alpha}}\right) = O(1) \quad (k \le n),$$

and $A_{\alpha} \in B(l_p)$ for any $\alpha > 0$ by Corollary 3.

ACKNOWLEDGEMENT

This research was supported by the Estonian Science Foundation (grant No. 7033).

REFERENCES

- 1. Borwein, D. Generalized Hausdorff and weighted mean matrices as bounded operators on l^p. Math. Z., 1983, **183**, 483–487.
- 2. Borwein, D. Nörlund operators on *l^p*. Canad. Math. Bull., 1993, **36**, 8–14.
- 3. Borwein, D. Simple conditions for matrices to be bounded operators on l^p. Canad. Math. Bull., 1998, 41, 10–14.
- 4. Borwein, D. Weighted mean operators on l^p. Canad. Math. Bull., 2000, **43**, 406–412.
- 5. Borwein, D. and Cass, F. P. Nörlund matrices as bounded operators on l^p. Arch. Math., 1984, 42, 464–469.
- Borwein, D. and Gao, X. Generalized Hausdorff and weighted mean matrices as operators on *l^p*. *J. Math. Anal. Appl.*, 1993, 178, 517–528.
- 7. Borwein, D. and Gao, X. Matrix operators on l^p to l^q . *Canad. Math. Bull.*, 1994, **37**, 448–456.
- 8. Borwein, D. and Jakimovski, A. Matrix operators on *l^p*. *Rocky Mountain J. Math.*, 1979, **9**, 463–477.
- 9. Cass, F. P. Convexity theorems for Nörlund and strong Nörlund summability. Math. Z., 1968, 112, 357–363.
- 10. Cass, F. P. and Kratz, W. Nörlund and weighted mean matrices as operators on *l^p*. *Rocky Mountain J. Math.*, 1990, **20**, 59–74.
- 11. Hardy, G. H. An inequality for Hausdorff means. J. London Math. Soc., 1943, 18, 46–50.
- Jakimovski, A., Rhoades, B. E., and Tzimbalario, J. Hausdorff matrices as bounded operators over l^p. Math. Z., 1974, 138, 173–181.
- 13. Kiesel, R. General Nörlund transforms and power series methods. Math. Z., 1993, 214, 273-286.
- 14. Kiesel, R. On scales of summability methods. Math. Nachr., 1995, 176, 129-138.
- 15. Kiesel, R. The law of the iterated logarithm for certain power series and generalized Nörlund methods. *Math. Proc. Camb. Phil. Soc.*, 1996, **120**, 735–753.
- 16. Kiesel, R. and Stadtmüller, U. Tauberian and convexity theorems for certain (N, p, q)-means. *Can. J. Math.*, 1994, **46**, 982–994.
- 17. Sinha, R. Convexity theorem for (N, p,q) summability. Kyungpook Math. J., 1973, 13, 37–40.
- Stadtmüller, U. and Tali, A. On some families of certain Nörlund methods and power series methods. J. Math. Anal. Appl., 1999, 238, 44–66.
- Stadtmüller, U. and Tali, A. Comparison of certain summability methods by speeds of convergence. *Anal. Math.*, 2003, 29, 227–242.
- 20. Tali, A. Convexity conditions for families of summability methods. Tartu Ülik. Toimetised, 1993, 960, 117–138.

Mõnest üldistatud Nörlundi maatriksite perest, kus maatriksid on tõkestatud operaatorid ruumis l_p

Ulrich Stadtmüller ja Anne Tali

On vaadeldud üldistatud Nörlundi maatrikseid $A = (N, p_n, q_n)$, mis on määratud kahe mittenegatiivse jadaga (p_n) ja (q_n) , kus $p_0, q_0 > 0$. Vaatluse all on võimalikult lihtsad tingimused, selleks et maatriks A oleks tõkestatud lineaarne operaator ruumis l_p $(1 . Kasutades artiklis [3] saadud tulemusi, on leitud eelmainitud piisavaid tingimusi, aga ka hinnanguid normi <math>||A||_p$ jaoks. Põhiprobleemina on uuritud, kas teatavad üldistatud Nörlundi maatriksite $A_{\alpha} = (N, p_n^{\alpha}, q_n)$ pered, mida on käsitletud mitmetes töödes (näiteks [19] ja [13]), moodustavad ruumis l_p tõkestatud lineaarsete operaatorite pered. Need maatriksid ei tarvitse rahuldada artiklis [3] saadud piisavaid tingimusi.