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Abstract. We deal with generalized Nörlund matrices A = (N, pn,qn) defined by means of two non-negative sequences (pn) and
(qn) with p0,q0 > 0. We are interested in simple conditions such that the associated non-negative triangular matrix A = (ank) is
a bounded linear operator on lp (1 < p < ∞) . Using results of D. Borwein (Canad. Math. Bull., 1998, 41, 10–14), we provide
sufficient conditions and bounds for the norm ‖A‖p . Our main question is whether certain families of generalized Nörlund matrices
Aα = (N, pα

n ,qn) studied by different authors (see, e.g., Anal. Math., 2003, 29, 227–242; Math. Z., 1993, 214, 273–286) are
bounded linear operators on lp. These matrices need not satisfy the sufficient conditions given by Borwein in the paper mentioned
above. Explicit bounds for the norms ‖Aα‖p are given.

Key words: operator theory, Banach space lp, bounded linear operators, generalized Nörlund matrices, Nörlund, Riesz and Euler–
Knopp matrices.

1. INTRODUCTION AND PRELIMINARIES

1.1. Suppose throughout the paper that

1 < p < ∞,
1
p

+
1
q

= 1.

Suppose also that A = (ank) is a triangular matrix of non-negative real numbers, that is, ank ≥ 0 for n,k≥ 0,
and ank = 0 for n > k, n,k ∈ IN0. Let lp be the Banach space of all complex sequences x = (xn) (n ∈ IN0)
with the norm

‖x‖p =

(
∞

∑
n=0

|xn|p
)1/p

< ∞,

and let B(lp) be the Banach algebra of all bounded linear operators on lp. Thus A ∈ B(lp) if and only if
Ax ∈ lp whenever x ∈ lp, where Ax = (yn) with

(Ax)n = yn =
n

∑
k=0

ankxk.
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Let
‖A‖p = sup

‖x‖p≤1
‖Ax‖p,

so that A ∈ B(lp) if and only if ‖A‖p < ∞, in which case ‖A‖p is the norm of A.
It is well known that A is a bounded operator on the Banach space m of bounded sequences if and only if

sup
n∈IN0

n

∑
k=0

ank < ∞.

This condition, together with
lim

n
ank = 0 for any k ∈ IN0,

is necessary and sufficient for A to be a bounded operator on the Banach space c0. But even on these two
conditions A need not be a bounded operator on lp. As an example the Nörlund method A = (N,enϕ

) with
0 < ϕ < 1 can be given (see [5]). Also, the Riesz weighted mean matrix A = (N, 1

n+1) is not a bounded
operator on lp because the necessary condition

∞

∑
n=0

(ank)p < ∞ (k ∈ IN0)

for A to be bounded on lp is not satisfied for it.

1.2. The problem of characterizing matrices in B(lp) by means of conditions that are not complicated and
difficult to apply has been discussed in a number of papers. This problem was discussed, for example, by
D. Borwein and other mathematicians in papers [3,7,8] in general and, in particular, for Nörlund, Riesz
weighted mean and Hausdorff matrices in [1–6,10,12]. In these papers different types of conditions (mostly
sufficient) for A to be in B(lp) were proved and illustrated with examples, also estimates for the norm ‖A‖p
were found. It should be mentioned that already in 1943 G. H. Hardy proved (see [11]) an inequality which
says that the Cesàro matrices A = (C,α) and the Euler–Knopp matrices A = (E,α) (α > 0) are in B(lp)
and that ‖A‖p = Γ(1+α)Γ(1/q)

Γ(α+1/q) and ‖A‖p = (α +1)1/p, respectively.

1.3. We consider in our paper generalized Nörlund matrices.
Suppose throughout the paper that (pn) and (qn) are two non-negative sequences such that p0,q0 > 0

and

rn =
n

∑
k=0

pn−kqk 6= 0 for any n ∈ IN0.

Let us consider the qeneralized Nörlund matrix A = (N, pn,qn), i.e., the matrix A = (ank) with

ank =

{ pn−k qk

rn
if 0≤ k ≤ n,

0 if k > n .

In particular, if qn = 1 for any n ∈ IN0, then we get the Nörlund matrix (N, pn,1) = (N, pn). If pn = 1 for any
n ∈ IN0, then we get the Riesz matrix (N,1,qn) = (N,qn). In particular, if pn = αn

n! (α > 0) and qn = 1
n! , we

have the Euler–Knopp matrices (N, pn,qn) = (E,α).
The most convenient conditions to show that the matrix A = (N, pn,qn) is in B(lp) come from the

following theorem of D. Borwein (see [3], Theorem 2) proved for A = (ank).

Theorem A. Suppose that A = (ank) satisfies the conditions

M1 = sup
n∈IN0

n

∑
k=0

ank < ∞ (1.1)
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and
ank ≤M2an j for 0≤ k ≤ j ≤ n, (1.2)

where M2 is a positive number independent of k, j,n.

Then A ∈ B(lp) and

max
{

a00,
λq
M2

}
≤ ‖A‖p ≤ qM1Mq−1

2 , (1.3)

where λ = liminfnan0.

Notice that (N, pn,qn) satisfies (1.1) with M1 = 1. Thus Theorem A gives the following immediate
corollary.

Corollary 1. If (pn) is non-increasing and (qn) is non-decreasing, then A = (N, pn,qn) ∈ B(lp) and (1.3)
holds with a00 = M1 = M2 = 1.

Example 1. If A = (N, 1
n+1 , log(n+2)) or A = (N, 1

n! , log(n+2)), then A∈ B(lp) and max{1, λq}≤ ‖A‖p ≤
q by Corollary 1.

1.4. The main idea of our paper is to show that on the basis of a given matrix A = (N, pn,qn) ∈ B(lp) the
families of matrices Aα being in B(lp) can be constructed, where α is a continuous or discrete parameter.
Proving Theorems 1 and 2, we will find out some families of matrices Aα = (N, pα

n ,qn) (see, e.g., [19]
and [13]) which are in B(lp) if (N, pn,qn) is in B(lp). It should be mentioned that if A = (N, pn,qn) satisfies
the conditions of Corollary 1, then the matrices Aα ∈ B(lp) in Theorems 1 and 2 need not satisfy these
conditions any more. In other words, (pα

n ) need not be non-increasing any more (if (pn) is), but nevertheless
Aα are bounded operators on lp.

1.5. We need also the preliminaries below.
The following theorem was published by Borwein in [3] as Theorem 1.

Theorem B. Suppose that A = (ank) satisfies conditions (1.1),

M3 = sup
0≤k≤n/2,n∈IN0

(n+1)ank < ∞, (1.4)

and

M4 = sup
k∈IN0

2k

∑
n=k

ank < ∞. (1.5)

Then A ∈ B(lp) and
‖A‖p ≤ µ1/q

1 µ1/p
2 , (1.6)

where
µ1 ≤ 21/pM1 +qM3 (1.7)

and
µ2 ≤M4 +qM3. (1.8)

We will use also the following simple proposition.

Proposition A. Let A1 and A2 be two matrices and A = A2 A1 their product. If A1 ∈ B(lp) and A2 ∈ B(lp),
then also A ∈ B(lp) and

‖A‖p ≤ ‖A2‖p‖A1‖p.
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2. SOME REMARKS ON GENERALIZED NÖRLUND MATRICES (N, pn, qn) AS BOUNDED
OPERATORS ON lp

2.1. First we notice that Corollary 1 can be slightly generalized.
If (pn) satisfies the condition

C1 an ≤ pn ≤C2 an (n ∈ IN0), (2.1)

where (an) is some non-negative sequence and C1 and C2 are positive numbers not depending on n, we write
pn ≈ an. If, in addition, (an) is non-decreasing, then (pn) is said to be almost non-decreasing. If pn ≈ an
and (an) is non-increasing, then (pn) is said to be almost non-increasing.

Thus, if
D1 bn ≤ qn ≤ D2 bn (n ∈ IN0), (2.2)

where (bn) is some non-decreasing sequence and D1 and D2 are positive constants, then (qn) is almost
non-decreasing.

Now the following corollary from Theorem A improves Corollary 1.

Corollary 2. Suppose that (pn) is almost non-increasing and (qn) is almost non-decreasing, i.e., that (2.1)
and (2.2) hold with some non-increasing (an) and non-decreasing (bn), respectively. Then A = (N, pn,qn)∈
B(lp) and the estimate in (1.3) for the norm ‖A‖p is valid with M1 = a00 = 1 and M2 = C2 D2

C1 D1
.

Proof. We have the inequalities

pn ≥C1 an ≥C1 a j ≥ C1

C2
p j

and
qn ≤ D2 bn ≤ D2 b j ≤ D2

D1
q j

for any n≤ j. Thus condition (1.2) is satisfied and our statement is true by Theorem A.

Example 2. If pn = αn

n! and qn = log(n + 2), where α > 0, then (N, pn,qn) ∈ B(lp) by Corollary 2 because
(pn) is almost non-increasing.

2.2. Applying Theorem B to (N, pn,qn), we get the following result.

Corollary 3. Suppose that

K1 = sup
0≤k≤n,n∈IN0

qkPn

rn
< ∞ (2.3)

and

K2 = sup
n∈IN0

(n+1)pn

Pn
< ∞, (2.4)

where Pn = ∑n
k=0 pk.

Then A = (N, pn,qn) ∈ B(lp) and the norm ‖A‖p satisfies (1.6), where

µ1 ≤ 21/p +2qK1K2 (2.5)

and
µ2 ≤ K1 +2qK1K2. (2.6)

Proof. Let us show that conditions (1.1), (1.4), and (1.5) are satisfied. We know that (1.1) is satisfied with
M1 = 1. Further, with the help of (2.3) we get:

2k

∑
n=k

ank ≤ K1

2k

∑
n=k

pn−k

Pn
≤ K1

Pk

2k

∑
n=k

pn−k = K1.
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Thus, (1.5) is satisfied with M4 ≤ K1. Finally, using (2.3) and (2.4), we get for all 0≤ k ≤ n/2 :

(n+1)ank =
(n+1)pn−kqk

rn
≤ K1

(n+1)pn−k

Pn
= K1

(n+1− k)pn−k

Pn−k

Pn−k

Pn

n+1
n− k +1

≤ K1 K2
2(n+1)

n+2
≤ 2K1 K2.

Thus also (1.4) is satisfied with M3 ≤ 2K1K2. So we have by Theorem B that inequality (1.6) holds together
with (2.5) and (2.6), which come from (1.7) and (1.8), respectively.

We add some remarks to Corollary 3.

Remark 1. In particular, if qn = 1 for all n ∈ IN0, then (2.3) is satisfied and K1 = 1. For this partial case
Corollary 3 was proved in [3] as Example 1.

Example 3. If pn = 1 (n ∈ IN0) and

qn =
{

1 if n is even,
0 if n is odd ,

then A = (N, pn,qn) ∈ B(lp) by Corollary 3 because conditions (2.3) and (2.4) are satisfied.

Example 4. Suppose that pn ≈ nα−1L1(n) and qn ≈ nδ L2(n), where α > 0, δ ≥ 0, L1(.) and L2(.) are slowly
varying functions and L2(.) is non-decreasing. Let us show that A = (N, pn,qn) ∈ B(lp). We have that (qn)
is almost non-decreasing,

rn ≈ nα+δ L1(n)L2(n)

and

Pn =
n

∑
k=0

pk ≈ nαL1(n)

(see [13,15]. Thus (2.3) and (2.4) are satisfied and A ∈ B(lp) by Corollary 3.

Example 5. If qn = 1 and

pn =
{

1 if n = m2, m ∈ IN,
0 otherwise ,

then neither the conditions of Corollary 2 nor the conditions of Corollary 3 are satisfied but nevertheless
(N, pn,qn) ∈ B(lp) (see [2]).

2.3. The following corollary comes from Proposition A.

Corollary 4. Let A1 = (N, p1
n,q

1
n) ∈ B(lp) and A2 = (N, p2

n,r
1
n) ∈ B(lp).

(i) Then also A = (N,(p2 ∗ p1)n,q1
n) ∈ B(lp) and

‖A‖p ≤ ‖A2‖p ‖A1‖p.

(ii) In particular, if the sequences p1 = (p1
n) and p2 = (p2

n) are non-increasing and (q1
n) is non-decreasing,

then
‖A‖p ≤ q2.
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Proof. As A is the product of matrices

A = (N,(p2 ∗ p1)n,q1
n) = (N, p2

n,r
1
n)(N, p1

n,q
1
n),

then statement (i) is true by Proposition A and statement (ii) follows from (i) because by Corollary 1 we
have for this particular case the inequalities ‖A1‖p ≤ q and ‖A2‖p ≤ q.

3. SOME FAMILIES OF MATRICES BEING BOUNDED OPERATORS ON lp

We consider here some families of matrices

Aα = (N, pα
n ,qn),

where α is a continuous or discrete parameter. These families of matrices have been studied in different
papers (see, e.g., [9,13,14,16–20] on different levels of generality from the point of view of summability of
sequences x = (xn).

Applying Corollaries 2–4, we find the sufficient conditions for Aα ∈ B(lp) but do not focus on proving
estimates for the norms ‖Aα‖p.

Theorem 1. Let Aα = (N, pα
n ,qn) be generalized Nörlund matrices, where α is a continuous parameter

with values α > 0 and

pα
n =

n

∑
k=0

cα
n−k pk,

where (cα
n ) is either

(i) cα
n = Aα−1

n =
(n+α−1

n

)
, n ∈ IN0,

or
(ii) cα

n = αn

n! , n ∈ IN0.

If A = (N, pn,qn) ∈ B(lp) and (rn) is almost non-decreasing, then also (N, pα
n ,qn) ∈ B(lp) for any α > 0. In

particular, if (rn) is non-decreasing, then in case (i) the inequality ‖Aα‖p ≤ q[α]+1‖A‖p holds, where [α] is
the integer part of α . More precisely, in this case ‖Aα‖p ≤ qα‖A‖p if α ∈ IN.

We prove the theorem first for the special case if p0 = 1 and pn = 0 for any n ∈ IN.

Lemma. Let us suppose that Aα = (N,cα
n ,qn), where α is a continuous parameter with values α > 0, (qn)

is almost non-decreasing, and cα
n is defined as in Theorem 1 in both cases (i) and (ii). Then Aα ∈ B(lp) for

any α > 0.
In particular, if (qn) is non-decreasing, then

‖Aα‖p ≤ q[α]+1 (α > 0) (3.1)

in case (i). More precisely,
‖Aα‖p ≤ qα (α ∈ IN). (3.2)

Proof. For case (ii) notice that the sequence (cα
n ) is almost non-increasing and thus Aα ∈ B(lp) by

Corollary 2.
In case (i) we choose some α > 0 and show that Aα ∈ B(lp) and that (3.1) and (3.2) hold in our particular

case. If α ≤ 1, then cα
n = Aα−1

n is non-increasing and our statement is true by Corollary 2.
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If α > 1, then rα
n = ∑n

k=0 Aα−1
n−k qk is increasing. We use the equality

(N,Aα−1
n ,qn) = (N,Aα−δ−1

n ,rδ
n )(N,Aδ−1

n ,qn) (α > 0,δ ≥ 0)

(see, e.g., [19]). Taking δ = 1, we can represent A[α] in the form of the product

A[α] = (N,A0
n,r

[α]−1
n )...(N,A0

n,r
2
n)(N,A0

n,r
1
n)(N,A1−1

n ,qn). (3.3)

The right side of equality (3.3) is a product of [α] matrices. As A0
n = 1, each of these matrices is in B(lp) by

Corollary 2 and therefore A[α] ∈ B(lp) by Proposition A. In particular, if (qn) is non-decreasing, then each
of the factors in the right side of equality (3.3) has a norm not greater than q by Corollary 1. As a result, we
get the inequality

‖A[α]‖p ≤ q[α]

in this particular case by Proposition A again. Thus, for α = [α] our statement is proved. For α > 1 in
general we have the equality

Aα = (N,Aα−[α]−1
n ,r[α]

n )A[α].

As both factors in the right side of the last equality are in B(lp) and the norm of the first of them is not
greater than q, Aα is in B(lp), and also inequality (3.1) holds in the particular case by Proposition A.

Proof of Theorem 1. We have the equality

(N, pα
n ,qn) = (N,cα

n ,rn)(N, pn,qn)

for any α > 0, where the right side is the product of matrices. As (rn) is almost non-decreasing,
(N,cα

n ,rn) ∈ B(lp), and also (3.1) and (3.2) hold in the particular case by Lemma. Thus our statement
is true by Proposition A.

Example 6. If A = (N, pn,qn) is defined as in Examples 1, 2, 3, or 5, then (N, pα
n ,qn) ∈ B(lp) for any α > 0

by Theorem 1, because (N, pn,qn) ∈ B(lp) and (rn) is non-decreasing in these cases.

Remark 2. The best-known special cases of the matrices (N, pα
n ,qn) given in Theorem 1 in case (i) are the

Cesàro matrices (C,α), where pn = δ0n and qn = 1, and the generalized Cesàro matrices (C,α,γ), where
pn = δ0n and qn =

(n+γ
n

)
. An example of case (ii) is given by Euler–Knopp matrices (E,α) with pn = δ0n

and qn = 1/n!.

Theorem 2. Consider the matrices Aα = (N, pα
n ,qn) = (N, p∗α

n ,qn) with the discrete parameter α ∈ IN
defined by the convolutions p∗1 = (pn) and (pα

n ) = p∗α = (p∗α
n ) = p∗1 ∗ p∗(α−1) for any α = 2,3, ... .

If
(i) pn ≈ nδ1L1(n) and qn ≈ nδ2L2(n), where δ1 >−1, δ2 ≥ 0, L1(.) and L2(.) are slowly varying functions

and L2(.) is non-decreasing,
or
(ii) (pn) is almost non-increasing and (qn) is almost non-decreasing, then Aα ∈ B(lp) for any α ∈ IN.

In particular, if (pn) is non-increasing and (qn) is non-decreasing, then ‖Aα‖p ≤ qα .

Proof. In case (i) we have p∗α
n ≈ nαδ1+α−1Lα

1 (n), where Lα
1 (.) is also a slowly varying function (see [13]).

Thus Aα ∈ B(lp) as was shown in Example 4.
In case (ii) we use the equality

(N, p∗(α+1)
n ,qn) = (N, pn,rα

n )(N, p∗α
n ,qn),

where rα
n = ∑n

k=0 p∗α
n−kqk is almost non-decreasing because (qn) is almost non-decreasing. As (N, pn,qn) ∈

B(lp) and (N, pn,rα
n ) ∈ B(lp) for any α ∈ IN by Corollary 2, the relation Aα ∈ B(lp) and also the estimate of

the norm ‖Aα‖p follow from Corollary 4 by induction.
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Remark 3. We note that the matrices Aα = (N, pα
n ,qn), which satisfy the conditions of Theorems 1 or 2 and

are therefore bounded operators on lp, need not satisfy the conditions neither of Corollary 2 (Theorem A)
nor of Corollary 3 (Theorem B). For example, if (pn) is an almost non-increasing sequence, then (pα

n ) need
not be almost non-increasing any more. Moreover, (pα

n ) is non-decreasing for any α ≥ 1 in case (i) of
Theorem 1.

We finish our paper with an application of Corollary 3.

Theorem 3. Suppose that Aα = (N, pα
n ,qn) (α > 0) are the same matrices as in Theorem 1 in case (i). If

(pn) satisfies condition (2.4), (qn) is almost non-decreasing and satisfies the condition

(n+1)qn = O(Qn),

then Aα ∈ B(lp) for any α > 0.

Proof. We apply Corollary 3 to the methods (N, pα
n ,qn) (instead of the methods (N, pn,qn)). We know that

pα+1
n = ∑n

k=0 pα
k = O(nαPn) and PnQn = O(n1−αrα

n ) (see [18]). Thus condition (2.3) is satisfied:

qk pα+1
n

rα
n

= O
(

qn pα+1
n

rα
n

)
= O

(
QnPnnα

(n+1)rα
n

)
= O(1) (k ≤ n),

and Aα ∈ B(lp) for any α > 0 by Corollary 3.
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Mõnest üldistatud Nörlundi maatriksite perest, kus maatriksid on tõkestatud
operaatorid ruumis lp

Ulrich Stadtmüller ja Anne Tali

On vaadeldud üldistatud Nörlundi maatrikseid A = (N, pn,qn), mis on määratud kahe mittenegatiivse
jadaga (pn) ja (qn), kus p0,q0 > 0. Vaatluse all on võimalikult lihtsad tingimused, selleks et maatriks A
oleks tõkestatud lineaarne operaator ruumis lp (1 < p < ∞) . Kasutades artiklis [3] saadud tulemusi, on
leitud eelmainitud piisavaid tingimusi, aga ka hinnanguid normi ‖A‖p jaoks. Põhiprobleemina on uuritud,
kas teatavad üldistatud Nörlundi maatriksite Aα = (N, pα

n ,qn) pered, mida on käsitletud mitmetes töödes
(näiteks [19] ja [13]), moodustavad ruumis lp tõkestatud lineaarsete operaatorite pered. Need maatriksid ei
tarvitse rahuldada artiklis [3] saadud piisavaid tingimusi.


