1. Borwein, D. On a scale of Abel-type summability methods. Proc. Cambridge Phil. Soc., 1957, 53, 318–322.
2. Borwein, D. On Borel-type methods of summability. Mathematica, 1958, 5, 128–133.
3. Borwein, D. and Shawyer, B. L. R. On Borel-methods. Tôhoku Math. J., 1966, 18, 283–298.
doi:10.2748/tmj/1178243418
4. Kangro, G. On the summability factors of the Bohr–Hardy for a given rapidity. I. Eesti NSV Tead. Akad. Toim. Füüs. Mat., 1969, 18, 137–146 (in Russian).
5. Kangro, G. Summability factors for the series l-bounded by the methods of Riesz and Cesàro. Tartu Ülik. Toimetised, 1971, 277, 136–154 (in Russian).
6. Pavlova, V. and Tali, A. On the convexity theorem of M. Riesz. Proc. Estonian Acad. Sci. Phys. Math., 2002, 51, 18–34.
7. Stadtmüller, U. and Tali, A. Comparison of certain summability methods by speeds of convergence. Anal. Math., 2003, 29, 227–242.
doi:10.1023/A:1025419305735
8. Stadtmüller, U. and Tali, A. Strong summability in certain families of summability methods. Acta Sci. Math. (Szeged), 2004, 70, 639–657.
9. Hardy, G. H. Divergent Series. Oxford Press, 1949.
10. Kuttner, B. On “translated quasi-Cesàro” summability. Proc. Cambridge Phil. Soc., 1966, 62, 705–712.
11. Tali, A. Zero-convex families of summability methods. Tartu Ülik. Toimetised, 1981, 504, 48–57 (in Russian).
12. Meronen, O. and Tammeraid, I. Generalized Nörlund method and convergence acceleration. Math. Model. Anal., 2007, 12, 195–204.