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Abstract. We deal with Riesz-type families (see Proc. Estonian Acad. Sci. Phys. Math., 2002, 51, 18–34 and Acta Sci. Math.
(Szeged), 2004, 70, 639–657) of summability methods Aα for converging functions and sequences. The methods Aα in a Riesz-
type family depend on a continuous parameter α, and are connected through certain generalized integral Nörlund methods. By
extending and applying the results of Stadtmüller and Tali (Anal. Math., 2003, 29, 227–242), we compare speeds of convergence
in a Riesz-type family. As expected, the speed of convergence cannot increase if we switch from one summability method to a
stronger one. Comparative estimations for speeds are found. In particular, the families of integral Riesz methods, generalized
integral Nörlund methods, and Abel- and Borel-type summability methods are considered. Numerical examples are given.
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1. INTRODUCTION AND PRELIMINARIES

Let us consider the functions x = x(u) defined for u ≥ 0, bounded and measurable in the sense of
Lebesgue on every finite interval [0,u0]. Let us denote the set of all these functions by X . Suppose
that A is a transformation of functions x = x(u) (or, in particular, of sequences x = (xn)) into functions
Ax = y = y(u) ∈ X . If the limit limu→∞ y(u) = s exists, then we say that x = x(u) is convergent to s with
respect to the summability method A, and write x(u)→ s(A). If the function y = y(u) is bounded, then we
say that x is bounded with respect to the method A, and write x(u) = O(A). We denote by ωA the set of all
these functions x, where the transformation A is applied, and by cA and mA the set of all functions x which
are, respectively, convergent and bounded with respect to the method A. The summability method A is said
to be regular if

lim
u→∞

x(u) = s =⇒ lim
u→∞

y(u) = s

whenever x ∈ X .
The most common summability method for functions x is an integral method A, defined with the help of

the transformation
y(u) =

∫ ∞

0
a(u,v)x(v)dv,
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where a(u,v) is a certain function of two variables u≥ 0 and v≥ 0. We also say that the integral method A
is defined by the function a(u,v). An example of the integral summability method is the generalized integral
Nörlund method (N,P(u),Q(u)), defined with the help of the transformation

y(u) =
1

R(u)

∫ u

0
P(u− v)Q(v)x(v)dv (u > 0),

where P = P(u) and Q = Q(u) are nonnegative functions from X such that R(u) =
∫ u

0 P(u− v)Q(v)dv 6= 0
for u > 0.

For sequences x = (xn) we do not consider in our paper matrix methods (which are the most common
summability methods), but focus ourselves on certain semi-continuous summability methods A, defined by
transformations

y(u) =
∞

∑
n=0

an(u)xn (u≥ 0),

where an(u) (n = 0,1,2, ...) are some functions from X .
As examples on semi-continuous methods the Abel-type methods Aα = (A,α) with α > −1 (see [1])

and the Borel-type methods Aα = (B,α) with α > α0 (where α0 is some fixed number) can be considered
(see [2,3]). The Abel-type methods (A,α) are defined by the transformation of x = (xn) into yα = yα(u)
with

yα(u) =
1

(u+1)α+1

∞

∑
n=0

Aα
n

(
u

u+1

)n

xn, (1.1)

where Aα
n are the Cesàro numbers. In particular, if α = 0, we have the Abel method A = (A,0).

The Borel-type methods (B,α) are defined by the transformation

yα(u) =
1
eu

∞

∑
n=N

un+α−1

Γ(n+α)
xn, (1.2)

where Γ(·) is the Gamma-function and N is the smallest integer satisfying the inequality N >
max{−α0,−1/2}. In particular, if α = 1, we have the Borel method B = (B,1).

One of the basic notions in this paper is the notion of the “speed of convergence”. We follow here the
definitions based on the definitions for sequences (see [4,5]) and extended for functions in [6,7].

Let λ = λ (u) be a positive function from X such that λ (u) → ∞ as u → ∞. We say that a function
x = x(u) is convergent to s with speed λ if the finite limit

lim
u→∞

λ (u) [x(u)− s]

exists. Note that the limit can be zero. If we have

λ (u) [x(u)− s] = O(1)

as u→∞, then x is said to be bounded with speed λ . We use the notations cλ and mλ for the sets of all these
functions x = x(u) which are convergent to some s with speed λ and bounded with speed λ , respectively.
In the obvious manner the notion of speed can be transferred to summability methods. We say that x is
convergent or bounded with speed λ with respect to the summability method A if Ax ∈ cλ or Ax ∈ mλ ,
respectively.
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2. RIESZ-TYPE FAMILIES OF SUMMABILITY METHODS

Here we discuss and extend the notion of a Riesz-type family of summability methods given in papers [6,8].

A. Let us start with some examples.

Example 1. Consider the generalized Nörlund methods Aα = (N,uα−1,q(u)), where α > 0 and q = q(u)
is a positive function from X . These methods are defined with the help of the transformation of x into
Aαx = yα = yα(u) with

yα(u) =
1

rα(u)

∫ u

0
(u− v)α−1 q(v)x(v)dv (u > 0),

where rα = rα(u) =
∫ u

0 (u− v)α−1q(v)dv.
It can be easily shown that any two methods Aγ and Aβ with β > γ > 0 are connected through the

relation
yβ (u) =

Mγ,β

rβ (u)

∫ u

0
(u− v)β−γ−1 rγ(v)yγ(v)dv (u > 0), (2.1)

and
rβ (u) = Mγ,β

∫ u

0
(u− v)β−γ−1 rγ(v)dv (u > 0), (2.2)

where

Mγ ,β =
Γ(β )

Γ(γ)Γ(β − γ)
. (2.3)

Let us prove first relation (2.2), starting from its right side and using the substitutions v′ = v−t and v′′ = v′
u−t :

Mγ,β

∫ u

0
(u− v)β−γ−1rγ(v)dv = Mγ,β

∫ u

0
(u− v)β−γ−1

(∫ v

0
(v− t)γ−1q(t)dt

)
dv

= Mγ,β

∫ u

0
q(t)

(∫ u−t

0
(u− t− v′)β−γ−1(v′)γ−1dv′

)
dt

= Mγ,β

∫ u

0
(u− t)β−1 q(t)B(β − γ,γ)dt

= rβ (u),

where B(., .) denotes the Beta-function. The verification of (2.1) follows along the same lines; we just have
to replace rγ(u) by rγ(u)yγ(u) and rβ (u) by rβ (u)yβ (u).

In particular, if q(u) = 1 (u ≥ 0), we have that rα(u) = uα/α and methods (N,uα−1,q(u)) turn into
Riesz methods (R,α) (see [9]), and (2.1) takes the form

yβ (u) =
Mγ,β

uβ

∫ u

0
(u− v)β−γ−1 vγ yγ(v)dv (u > 0), (2.4)

with

Mγ ,β =
Γ(β +1)

Γ(γ +1)Γ(β − γ)
. (2.5)

Note that the same connection formula (2.4) appears for Abel methods (A,β ) and (A,γ) defined by (1.1).
We have only to exchange places of yγ(u) and yβ (u) in it. More precisely, we have the relation (see [1])

yγ(u) =
Mγ,β

uβ

∫ u

0
(u− v)β−γ−1 vγ yβ (v)dv (u > 0, β > γ >−1), (2.6)

where Mγ ,β is defined by (2.5).
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Example 2. Connection formula (2.6), together with (2.5), appears also if we consider the methods
Aα = (D,α) (α >−1), defined with the help of the integral transformation (see [10])

yα(u) = (α +1)u
∫ ∞

0

vα

(v+u)α+2 x(v)dv. (2.7)

As there exist many other families with the connection formulas analogous to (2.1) and, in particular, to (2.4),
we next consider a more general notion, the notion of a Riesz-type family defined in [6,8], and extend it.

B. Let {Aα} be a family of summability methods Aα where1 α >
(−)α1 and which are defined by trans-

formations of functions x = x(u) ∈ ωAα ⊂ X into functions Aαx = yα = yα(u) ∈ X . Suppose that for any
β > γ >

(−)α1 we have the relation
ωAγ ⊂ ωAβ (2.8)

or
ωAβ ⊂ ωAγ . (2.9)

Definition 1. A family {Aα} (α >
(−)α1) is said to be a Riesz-type family if for every β > γ >

(−)α1

A ) relation (2.8) holds and the methods Aγ and Aβ are connected through (2.1) or
B) relation (2.9) holds and the methods Aγ and Aβ are connected through the relation

yγ(u) =
Mγ ,β

rβ (u)

∫ u

0
(u− v)β−γ−1 rγ(v)yβ (v)dv (u > 0), (2.10)

where rγ = rγ(u) and rβ = rβ (u) are some positive functions from X related through (2.2) and Mγ,β is a
constant depending on γ and β .

In other words, a Riesz-type family is a family where every two methods are connected through the
connection formula

Aβ = Cγ,β ◦Aγ (β > γ
>

(−)
α1)

in case A ), and

Aγ = Cγ,β ◦Aβ (β > γ
>

(−)
α1)

in case B), where Cγ,β is the integral method defined with the help of the function

cγ,β (u,v) =
{

Mγ,β (u− v)β−γ−1 rγ(v)/rβ (u) if 0≤ v < u,
0 if v≥ u .

Note that Definition 1 in case A ) was given in [6,8]. We see that the methods (N,uα−1,q(u)) (α > 0) and
(A,α) and (D,α) (α > −1) discussed above form Riesz-type families. The first of them is a Riesz-type
family of case A ), and the other two are Riesz-type families of case B).

Let us consider some more examples of Riesz-type families.

Example 3. Let {Aα} be the family of generalized Nörlund methods (N, pα(u),q(u)) (α > α0), defined
with the help of positive functions p = p(u) ∈ X and q = q(u) ∈ X and number α0 such that

rα(u) =
∫ u

0
pα(u− v)q(v)dv > 0 (u > 0, α > α0),

1 The notation α >
(−) α1 means that we consider parameter values α > α1 or α ≥ α1 with some fixed number α1 .
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where pα(u) =
∫ u

0 (u− v)α−1 p(v)dv. It is known that relation (2.1), together with (2.2) and (2.3), holds for
any β > γ > α0 (see [11]), and thus this family is a Riesz-type family of case A ).

Example 4. Consider the family {Aα} of Borel-type methods Aα = (B,α,qn) defined in [8]. Let (qn) be a
nonnegative sequence with q0 > 0 such that the power series ∑qn un has the radius of convergence R = ∞
and qn > 0 at least for one n ∈ IN. Denote

rα(u) =
∞

∑
n=1

n!qn un+α−1

Γ(n+α)

and define the methods (B,α,qn) (α > −1/2) for converging sequences x = (xn) with the help of the
transformation

yα(u) =
1

rα(u)

∞

∑
n=1

n!qn un+α−1

Γ(n+α)
xn (u > 0).

The methods (B,α,qn) satisfy relations (2.1) and (2.2) with Mγ ,β = 1/Γ(β − γ) (see [8]). Thus {Aα} is a
Riesz-type family of case A ). In particular, if qn = 1

n! , we get the Borel-type methods (B,α) = (B,α,1/n!)
(see (1.2)) because in this case rα(u)∼ eu as u → ∞.

C. We discuss here the property of monotony of a Riesz-type family.

Lemma 1. Let {Aα} (α >
(−)α1) be a Riesz-type family. The methods Cγ,β are regular for all β > γ > α1.

These methods are regular also for all β > γ = α1, provided that the condition

lim
u→∞

∫ u

0
rα1(v)dv = ∞ (2.11)

holds.

Proof. For the case β > γ > α1, this result was proved in [1] as Proposition 1. It remains to prove our
statement if β > γ = α1. Because of the relation

Cα1,β = Cδ ,β ◦Cα1,δ (β > δ > α1)

(which follows from (2.1)) in case A ) and the relation

Cα1,β = Cα1,δ ◦Cδ ,β (β > δ > α1)

(which follows from (2.10)) in case B), it suffices to verify our statement only for α1 < β < α1 +1. We use
Theorem 6 from [9], which gives the sufficient conditions for the regularity of integral methods. Since the
methods Cα1,β are defined by positive functions and

∫ u
0 cα1,β (u,v)dv = 1 by (2.2), it remains to show that

lim
u→∞

∫ v0

0
cα1,β (u,v)dv = 0 (2.12)

for every finite v0 > 0. Supposing that v≤ v0 < u, we get with the help of (2.11) that

cα1,β (u,v) =
Mα1,β (u− v)β−α1−1 rα1(v)

rβ (u)
= Ov0(1)

(u− v)β−α1−1
∫ u

0 (u− v)β−α1−1 rα1(v)dv

= Ov0(1)
(u− v)β−α1−1

uβ−α1−1
∫ u

0 rα1(v)dv
= Ov0(1)

(
1− v

u

)β−α1−1 1∫ u
0 rα1(v)dv

= Ov0(1)
(

1− v0

u

)β−α1−1 1∫ u
0 rα1(v)dv

→ 0

uniformly for 0 < v≤ v0 as u→ ∞. Hence condition (2.12) is satisfied for every v0 > 0.
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Remark 1. As we can see from the previous proof, the transformations Cγ ,β (β > γ >
(−)α1) transform all

bounded functions of X into bounded functions of X again.

Proposition 1. Let {Aα} (α >
(−)α1) be a Riesz-type family. Then we have for functions x = x(u) and numbers

s and β > γ >
(−)α1 in case A ) that

x(u) = O(Aγ) =⇒ x(u) = O(Aβ ) and x(u) → s(Aγ) =⇒ x(u) → s(Aβ ),

and in case B) that

x(u) = O(Aβ ) =⇒ x(u) = O(Aγ) and x(u)→ s(Aβ )−→ x(u) → s(Aγ),

provided in both cases that (2.11) is satisfied if γ = α1 is included.

Proof. This result follows directly from Definition 1 because the methods Cγ,β are regular by Lemma 1.

3. COMPARISON OF SPEEDS OF CONVERGENCE IN A RIESZ-TYPE FAMILY

Theorem 1 below describes how the speed of convergence changes if we go from one summability method
in the family to a stronger one.

Theorem 1. Let {Aα} (α > α0) be a Riesz-type family. Let there be given some positive function
λ = λ (u)→ ∞ from X and some number γ > α0 such that rγ (u)

λ (u) ∈ X .

(i) Then we have for functions x = x(u) and numbers s and β ≥ γ
in case A ) that

λ (u) [yγ(u)− s] = O(1) =⇒ λβ (u) [yβ (u)− s] = O(1),

and in case B) that

λ (u) [yβ (u)− s] = O(1) =⇒ λβ (u) [yγ(u)− s] = O(1),

where the speeds are related through the formulas

λβ (u) =
rβ (u)
bβ (u)

with bβ (u) = Mγ ,β

∫ u

0
(u− v)β−γ−1 bγ(v)dv and bγ(u) =

rγ(u)
λ (u)

. (3.1)

(ii) Moreover, we have
in case A ) that

λ (u) [yγ(u)− s]→ t =⇒ λβ (u) [yβ (u)− s]→ t,

and in case B) that

λ (u) [yβ (u)− s]→ t =⇒ λβ (u) [yγ(u)− s]→ t,

provided in both cases that

lim
u→∞

∫ u

0
bγ(v)dv = ∞. (3.2)

Proof.
Case A ). Set α1 = γ and consider another family of summability methods Bα (α ≥ γ), defined by the

transformations of x into ηα = ηα(u) with

ηα(u) = λα(u)yα(u) ,
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where λα = λα(u) is given according to (3.1). The methods Bα obey the relation

ηβ (u) =
Mγ ,β

bβ (u)

∫ u

0
(u− v)β−γ−1 bγ(v)ηγ(v)dv (3.3)

and form therefore a Riesz-type family. Notice that we have for α ≥ γ:

λα(u) [yα(u)− s] = O(1)⇐⇒ x(u)− s = O(Bα), (3.4)

λα(u) [yα(u)− s]→ t ⇐⇒ x(u)− s→ t (Bα), (3.5)

where λγ(u) = λ (u). Now Proposition 1 in case A ) (apply it to Bα and x(u)− s instead of Aα and
x(u)) yields the desired result. Notice that relation (3.3) defines the connection methods C∗γ,β such that
Bβ = C∗γ ,β ◦Bγ .

Case B). Define the methods Bβ and Bγ by transformations of x into the functions ηβ and ηγ ,
respectively, where ηβ (u) = λ (u)yβ (u) and ηγ(u) = λβ (u)yγ(u). Now we have the relation

ηγ(u) =
Mγ,β

bβ (u)

∫ u

0
(u− v)β−γ−1 bγ(u)ηβ (v)dv, (3.6)

which yields the desired result due to the regularity of connection methods C∗γ,β which have in case of (3.6)
the same shape as in case of (3.3).

Remark 2. Under restriction (3.2) the condition λ (u)→ ∞ implies λβ (u)→ ∞ in Theorem 1. This follows
from the regularity of methods Cγ,β and C∗γ ,β (apply C∗γ,β to the function λ (u)[x(u)− s]→ t, where t 6= 0 and
Cγ,β to the function x(u)).

We note that case A ) of Theorem 1 can be considered as a generalization of case A) of Theorem 1
of [7], which was proved for matrix case. Certain evaluations of the speed of convergence for matrix
Nörlund methods in Banach spaces were proved in a recent paper [12].

Next we will compare the speeds λ = λ (u) and λβ = λβ (u) described in Theorem 1 by proving some
inequalities.

Let a = a(u) and b = b(u) be two positive functions from X . If there exist positive numbers c1, c2, and
u0 such that the condition

c1 b(u)≤ a(u) ≤ c2 b(u) (3.7)

holds for every u > u0, we write
a(u)≈ b(u).

If the function b = b(u) is nondecreasing and condition (3.7) is satisfied with some positive numbers c1 and
c2 for any u > 0, then we say that the function a = a(u) is almost nondecreasing.

Proposition 2. Let there be given a Riesz-type family {Aα}(α > α0) and an almost nondecreasing function
λ = λ (u). Suppose that λβ = λβ (u) (β > γ > α0) is defined through (3.1). Then for β > γ > α0 we have

λβ (u)≤M λ (u) (u > 0),

where M is some positive constant independent of u.

Proof. By the relation rγ(u) = bγ(u)λ (u) and the other formulas (3.1) we have

λβ (u) =
rβ (u)
bβ (u)

=
∫ u

0 (u− v)β−γ−1 bγ(v)λ (v)dv∫ u
0 (u− v)β−γ−1 bγ(v)dv

≤M λ (u)

for any u > 0.
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This result says that the speed of convergence cannot be improved by switching to a stronger
summability method. It is consistent with the results known for matrix methods (see [4,12]), which say
that a regular triangular matrix method cannot improve the speed of convergence (see also Proposition 2
in [7]). However, the speed cannot become much worse if we switch to a stronger method.

Proposition 3. Let there be given a Riesz-type family {Aα}(α > α0) and a positive function λ = λ (u).
Suppose that λβ = λβ (u) (β > γ > α0) is defined through (3.1). If bγ(u) = rγ(u)/λ (u) is almost non-
decreasing, then for β > γ > α0 we have

λβ (u)≥ K rβ (u)
rγ(u)uβ−γ λ (u) (u > 0),

where K is some constant independent of u.

Proof. With the help of formulas (3.1) we find that

λβ (u) =
rβ (u)
bβ (u)

=
rβ (u)

Mγ ,β
∫ u

0 (u− v)β−γ−1 bγ(v)dv

≥ N rβ (u)
bγ(u)

∫ u
0 (u− v)β−γ−1 dv

=
K rβ (u)

bγ(u)uβ−γ

=
K rβ (u)

rγ(u)uβ−γ λ (u),

where the coefficients Mγ,β are determined by the given Riesz-type family, and N and K depend on γ and β
but not on u.

Remark 3. If both λ (u) and bγ(u) are almost nondecreasing, then for β > γ > α0 we have by Propositions 2
and 3

K rβ (u)
rγ(u)uβ−γ λ (u)≤ λβ (u)≤M λ (u) (u > 0),

where K and M are positive constants independent of u.

4. EXAMPLES ON THE COMPARISON OF SPEEDS OF CONVERGENCE

Applying Theorem 1, we find here comparative evaluations of speeds of convergence for summability
methods in some special Riesz-type families.

Example 5. We consider the family of Riesz methods Aα = (R,α) = (N,uα−1,1) (α > 0). Let us choose
the speed of convergence λ (u) = (u+1)ρ (ρ > 0) and some number γ > 0.

Suppose that x = x(u) is a function having the given speed of convergence λ (u) with respect to the
method Aγ = (R,γ). Determine with the help of Theorem 1 the speed of convergence λβ (u) of x = x(u) with
respect to the methods Aβ = (R,β ) for β > γ .

Using formulas (3.1), we have λβ (u) = rβ (u)/bβ (u) with rβ (u) = uβ /β and

bβ (u) = Mγ ,β

∫ u

0
(u− v)β−γ−1 rγ(v)

λ (v)
dv =

Mγ ,β

γ

∫ u

0
(u− v)β−γ−1 vγ

(v+1)ρ dv (u > 0), (4.1)

where Mγ ,β is the constant defined by (2.3).
It follows directly from (4.1) that

bβ (u)≥ Mγ,β

γ 2ρ

∫ u/2

1
(u− v)β−γ−1 vγ−ρ dv (4.2)

for every u > 2.
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a) If ρ < γ +1, then (4.1) yields due to Theorem 42 of [9] the equivalence

bβ (u)∼ Mγ,β

γ

∫ u

0
(u− v)β−γ−1 vγ−ρ dv

as x→ ∞. Calculating the last integral with the help of substitution t = v/u, we get:

∫ u

0
(u− v)β−γ−1 vγ−ρ dv = uβ−ρ

∫ 1

0
(1− t)β−γ−1 t γ−ρ dt

= uβ−ρ B(β − γ,γ−ρ +1).

Thus we have in this case that

bβ (u)∼ Mγ,β B(β − γ,γ−ρ +1)
γ

uβ−ρ

and

λβ (u)∼ Γ(γ +1)Γ(β −ρ +1)
Γ(β +1)Γ(γ−ρ +1)

uρ (4.3)

as u→ ∞.
Evaluating the functions bβ (u) and λβ (u), we do not calculate in further estimations (as we did in (4.2)

and (4.3)) the exact values of numerical coefficients any more. Moreover, in order to shorten our writings,
we do not emphasize further the dependence of these coefficients on parameters γ, β , and ρ with the help
of indices in these coefficients.

b) If ρ = γ +1, it follows from (4.1) that

bβ (u) ≤ L1

∫ u/2

0
(u− v)β−γ−1 (v+1)−1 dv+L1

∫ u

u/2
(u− v)β−γ−1 (v+1)−1 dv

≤ L2 uβ−γ−1
∫ u/2

0

dv
v+1

+
L3

u

∫ u

u/2
(u− v)β−γ−1 dv

≤ L4 uβ−γ−1 logu+L5 uβ−γ−1 logu
= L6 uβ−γ−1 logu

for every u > u0, where u0 is some positive number and L1,L2, ...,L6 are constants independent of u.
On the other hand, inequality (4.2) gives us that

bβ (u)≥M1

∫ u/2

1
(u− v)β−γ−1 (v+1)−1 dv≥M2 uβ−γ−1

∫ u/2

1

dv
v+1

≥M3 uβ−γ−1 logu

for every u > u1, where u1 is some positive number bigger than 2, and M1, M2, and M3 are constants
independent of u. Thus we have shown that in this case

bβ (u)≈ uβ−γ−1 logu

and

λβ (u)≈ uγ+1

logu
. (4.4)

c) If ρ > γ + 1, then starting from (4.1) and (4.2) and discussing analogously to case b), we come to the
relations

bβ (u)≈ uβ−γ−1
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and
λβ (u)≈ uγ+1. (4.5)

As a result we have proved by (4.3)–(4.5) the following estimations:

λβ (u)∼ Γ(γ +1)Γ(β −ρ +1)
Γ(β +1)Γ(γ−ρ +1)

λ (u) if ρ < γ +1,

λβ (u)≈




λ (u)
logu

if ρ = γ +1,

λ (u)uγ−ρ+1 if ρ > γ +1.

Notice that case A ) of statement (i) of Theorem 1 holds here for any β > γ > 0 and ρ > 0. Moreover, if
ρ < γ + 1 or ρ = γ + 1, then condition (3.2) is satisfied and also case A ) of statement (ii) of Theorem 1
works here.

Example 6. Consider the family of Abel-type methods Aα = (A,α) (α > −1). Suppose that λ (u) is the
same as in the previous example. Fix some number γ > −1 and pose the same task as in the previous
example to find λβ (u) for β > γ >−1.

Here the connection method Cγ,β is the same as for the Riesz methods (compare relations (2.6) and
(2.4). So the same situation as in the previous example appears here and we get the same speed λβ (u).
Thus, case B) of statement (i) of Theorem 1 holds here. Moreover, if ρ < γ +1 or ρ = γ +1, then condition
(3.2) is satisfied and also case B) of statement (ii) of Theorem 1 works.

The same situation appears if we consider the family of methods Aα = (D,α) (α >−1) (see Example 2).

Example 7. Let us consider the Borel-type methods Aα = (B,α,1/n!) = (B,α) (α >−1/2). Here we have
rα(u)∼ eu (see Example 4).

Suppose that λ (u) = (u + 1)ρ eu, fix some γ > −1/2, and find λβ (u) for β > γ again. Now we get for
β > γ with the help of relations (3.1) that

bβ (u)≈
∫ u

0
(u− v)β−γ−1 ev

(v+1)ρ ev dv =
∫ u

0
(u− v)β−γ−1 (v+1)−ρ dv.

Evaluating the last integral in the same way as in Example 5, we get the following results:

bβ (u) ≈




uβ−γ−1 if ρ > 1,

uβ−γ−1 logu if ρ = 1,

uβ−γ−ρ if ρ < 1

and

λβ (u) =
rβ (u)
bβ (u)

≈





eu

uβ−γ−1 ∼
λ (u)

uβ−γ+ρ−1 if ρ > 1,

eu

uβ−γ−1 logu
∼ λ (u)

uβ−γ logu
if ρ = 1,

eu

uβ−γ−ρ ∼
λ (u)
uβ−γ if ρ < 1.

Example 8. Consider here the methods Aα = (N,uα−1, euϕ
) (α > 0), where 0 < ϕ < 1 is some fixed number.

Suppose that λ (u) = (u+1)ρ (ρ > 0). We have for β ≥ γ that (see [7, p. 236])

rβ (u)≈ euϕ
u(1−ϕ)β .
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Now we get with the help of (3.1) that

bβ (u)≈ euϕ
u(1−ϕ)β−ρ

and
λβ (u)≈ uρ ∼ λ (u)

if β > γ. So, both statements (i) and (ii) in case A ) of Theorem 1 apply here with

λβ (u)≈ λ (u).

Example 9. Let Aα be the same methods as in the previous example, but suppose that λ (u) = euϕ

(0 < ϕ < 1). Then we have by (3.1) that bγ(u)≈ u(1−ϕ)γ and

bβ (u)≈
∫ u

0
(u− v)β−γ−1bγ(v)dv≈ uβ−γ+(1−ϕ)γ

for β > γ. Therefore statements (i) and (ii) of Theorem 1 in case A ) are true with

λβ (u)≈ euϕ
uϕ(γ−β ) = uϕ(γ−β ) λ (u).

This series of examples could be continued.
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Summeeruvuskiiruste võrdlemine Rieszi-tüüpi peredes

Anna Šeletski ja Anne Tali

On võrreldud funktsioonide (ja jadade) summeeruvust eri summeerimismenetluste korral Rieszi-tüüpi
peredes (vt [6] ja [8]). On üldistatud ja rakendatud töös [7] saadud tulemusi jadade summeeruvuskiiruste
võrdlemisel. On tõestatud teoreem, mis võimaldab võrrelda summeeruvuskiirusi eri menetluste korral
Rieszi-tüüpi peres. On hinnatud summeeruvuskiirusi võrratuste abil. Näidetena on vaadeldud Rieszi ja
üldistatud Nörlundi integraalmenetlusi, samuti Abeli- ning Boreli-tüüpi summeerimismenetlusi.


