In this study, a new optimization approach is introduced to reduce vibration exerted on a double crank-rocker mechanism. A dynamic analysis based on planar methods of this mechanism is suggested, and formulation of shaking forces and shaking moments inducing vibration on this system is presented. A two-step optimization technique is suggested to study system sensitivity to the components of shaking forces and moments to enhance the mechanism’s balancing process. This leads to identification of the most dominant parameters which are then used to formulate the objective functions of effective optimization. Each objective function is studied for each individual case, after which the outcome results of the mechanism’s balancing optimization are introduced and discussed.
1. Kochev, I. S. General theory of complete shaking moment balancing of planar linkages: A critical review. Mech. Mach. Theory, 2000, 35(11), 1501–1514.
https://doi.org/10.1016/S0094-114X(00)00015-X
2. Berkof, R. S. Complete force and moment balancing of inline four-bar linkages. Mech. Mach. Theory, 1973, 8(3), 397–410.
https://doi.org/10.1016/0094-114X(73)90076-1
3. Lowen, G. G. and Berkof, R. S. Determination of force-balanced four-bar linkages with optimum shaking moment characteristics. J. Manuf. Sci. Eng. Trans. ASME, 1971, 93(1), 39–46.
https://doi.org/10.1115/1.3427915
4. Arakelian, V. H. Shaking moment cancellation of self-balanced slider-crank mechanical systems by means of optimum mass redistribution. Mech. Res. Commun., 2006, 33(6), 846–850.
https://doi.org/10.1016/j.mechrescom.2006.03.003
5. Acevedo, M., Orvañanos, T. and Velázquez, R. Shaking moment balancing of a four-bar mechanism using actuation redundancy. Mech. Mach. Sci., 2019, 73, 3319–3327.
https://doi.org/10.1007/978-3-030-20131-9_328
6. Arakelian, V. H. Complete shaking force and shaking moment balancing of RSS’R spatial linkages. Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn., 2007, 221(2), 303–410.
https://doi.org/10.1243/14644193JMBD26
7. Tian, Q., Zhang, Y., Chen, L. and Flores, P. Dynamics of spatial flexible multibody systems with clearance and lubricated spherical joints. Comput. Struct., 2009, 87(13–14), 913–929.
http://dx.doi.org/10.1016/j.compstruc.2009.03.006
8. Hai-Yang, Z., Min-Qiang, X., Jin-Dong, W. and Yong-Bo, L. A parameters optimization method for planar joint clearance model and its application for dynamics simulation of reciprocating compressor. J. Sound Vib., 2015, 344, 416–433.
http://dx.doi.org/10.1016/j.jsv.2015.01.044
9. Chaudhary, H. and Saha, S. K. An optimization technique for the balancing of spatial mechanisms. Mech. Mach. Theory, 2008, 43(4), 506–522.
https://doi.org/10.1016/j.mechmachtheory.2007.03.009
10. Albaghdadi, A. M., Baharom, M. B. and Sualiman, S. A. Balancing and simulation of a double crank-rocker engine model for optimum reduction of shaking forces and shaking moments. Math. Model. Eng. Probl., 2021, 8(2), 237–245.
https://doi.org/10.18280/mmep.080210
11. Albaghdadi, A. M., Baharom, M. B. and Sulaiman, S. A. Parameter design optimization of the crank-rocker engine using the FMINCON function in MATLAB. IOP Conf. Ser.: Mater. Sci. Eng., 2021, 1088(1), 012072.
https://doi.org/10.1088/1757-899X/1088/1/012072
12. Stanišić, M. M. Mechanisms and Machines: Kinematics, Dynamics, and Synthesis. 1st edition. Cengage Learning, Stamford, CT, 2015.
https://doi.org/10.1007/s11575-014-0236-1
13. Sandor, G. N. and Erdman, A. G. Advanced Mechanism Design: Analysis and Synthesis, vol. 2. Prentice-Hall, Englewood Cliffs, NJ, 1984.
https://doi.org/10.1016/0094-114X(93)90015-N
14. Yan, H.-S. and Soong, R.-C. Kinematic and dynamic design of four-bar linkages with variable input speed and external applied loads. Trans. Can. Soc. Mech. Eng., 2002, 26(3), 281–310.
https://doi.org/10.1139/tcsme-2002-0016
15. Erkaya, S. Investigation of balancing problem for a planar mechanism using genetic algorithm. J. Mech. Sci. Technol., 2013, 27(7), 2153–2160.
https://doi.org/10.1007/s12206-013-0530-z
16. Rao, S. S. Engineering Optimization: Theory and Practice. Fourth edition. John Wiley & Sons, Hoboken, NJ, 2009.
17. Orvañanos-Guerrero, M. T., Sánchez, C. N., Rivera, M., Acevedo, M. and Velázquez, R. Gradient descent-based optimization method of a four-bar mechanism using fully Cartesian coordinates. Appl. Sci., 2019, 9(19), 4115.
https://doi.org/10.3390/app9194115
18. Arakelian, V. and Dahan, M. Partial shaking moment balancing of fully force balanced linkages. Mech. Mach. Theory, 2001, 36(11–12), 1241–1252.
https://doi.org/10.1016/S0094-114X(01)00046-5
19. Lowen, G. G., Tepper, F. R. and Berkof, R. S. The quantitative influence of complete force balancing on the forces and moments of certain families of four-bar linkages. Mech. Mach. Theory, 1974, 9(3–4), 299–323.
https://doi.org/10.1016/0094-114X(74)90017-2