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Abstract. In this study, a new optimization approach is introduced to reduce vibration exerted on a double crank­rocker mechanism. 

A dynamic analysis based on planar methods of this mechanism is suggested, and formulation of shaking forces and shaking moments 

inducing vibration on this system is presented. A two­step optimization technique is suggested to study system sensitivity to the 

components of shaking forces and moments to enhance the mechanism’s balancing process. This leads to identification of the most 

dominant parameters which are then used to formulate the objective functions of effective optimization. Each objective function is 

studied for each individual case, after which the outcome results of the mechanism’s balancing optimization are introduced and 

discussed. 
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1. INTRODUCTION 

 

As regards the problem of the trade­off between shaking forces and shaking moments balancing of a four­bar 

mechanism, many studies have been conducted to minimize this gap and search for an optimal solution that suits 

each distinct case. Some of these studies are related to full or partial optimization to reduce both shaking forces 

and moments, while others are only concerned with one part of the problem at a time. In mechanical systems where 

forces are balanced using methods such as mass distribution or counterweight addition, the increment of shaking 

moment values is definite since it is affected by mass inertia [1]. Consequently, scholars have studied methods for 

shaking forces and moments reduction by adding counterweights to minimize their undesired effect on related 

systems. 

Berkof [2] suggested a combination of redistribution of linkage masses and addition of counterweights to fully 

balance a four­bar linkage system even under variable speeds. In the proposal, the external loads were not 

considered during optimization. The cost of the proposal was the increase in the system’s total mass and input 

torque. Also, Lowen and Berkof [3] studied shaking moment optimization of a force­balanced four­bar mechanism. 

It was concluded that there were many factors that affected the optimal optimization of a specific system such as 

linkage length ratios, mass and density characteristics, and the input angular velocity.  

Some limitations were also present when performing the optimization process, which needed to be taken into 

consideration. Of these limitations, there were more than one optimization minima, of which only one could be 
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attained. Moreover, applying the concept of optimal mass distribution of a mechanism is only limited to specific 

configurations. The ability to eliminate forces through different means can lead to an inevitable increase in moment 

values, owing to many reasons such as the increase in the system’s total mass. Arakelian [4] presented a method 

for shaking moment balancing of self­balanced double­acting slider­crank mechanisms. It was noticed that the 

reaction forces were cancelled out due to a specific mechanism arrangement. However, the shaking moments were 

still present, which could lead to undesired vibration. The author suggested that shaking moments could be 

eliminated using the combination of the effect of pantograph linkage and application of a mass redistribution of 

the coupler link. As a result, both the shaking moment and input torque were optimized.  

To eliminate the vibration induced by shaking moments from another perspective, Acevedo et. al. [5] suggested 

a redundant motor to counter the inertial mass of a previously force­balanced four­bar linkage. This method is 

easier in terms of application, and it prevents any mass increment of the system or complexity in the original 

configuration. Moreover, this method can be applied to a wider range of working mechanisms under the condition 

of the system’s pre­balanced reaction forces. 

The balancing of a spatial mechanism has also been considered and studied on different occasions. Arakelian 

[6] presented a simplified method to achieve complete balancing of spatial linkages related to forces and moments 

caused by inertial loads. The author suggested replacing the original configuration of the coupler by two 

concentrated masses on both ends. This would transform the balancing method into rotating linkages with 

concentrated masses. Several researchers have performed dynamic analyses and balancing of spatial multibody 

systems by means of comprehensive computational study [7] while others [8,9] have proposed different balancing 

methods through the development of optimization techniques to enhance such systems.   

In this paper, the problem of the trade­off between shaking forces and shaking moments exerted on a double 

crank­rocker mechanism is introduced. This problem was studied earlier in [10], where the two­dimensional 

dynamic analysis was only introduced. Hence, the objective of this research was to perform a study to minimize 

the vibration acting on a double crank­rocker (DCR) mechanism considering a three­dimensional dynamic analysis. 

The proposed method involves a trade­off between shaking force and shaking moment balancing. This elementary 

mechanism architecture is suggested to overcome vibration resulting from shaking forces and moments, mainly 

due to its ability to counter the inertial action between different mechanism linkages, similar ideas were reported 

in [1]. The method of using counterweights for shaking force balancing was applied and the optimization of this 

system is presented. However, due to this process, an increase in the system’s mass led to the increase in shaking 

moments. Even though this unique configuration of a DCR mechanism was expected to reduce the overall shaking 

moments, further enhancement could be introduced to achieve optimal results. A simplified approach of the tri­

planar analysis of different forces and moments is introduced, which is then used to perform a three­dimensional 

balancing optimization process. In addition, a developed method applying the best objective function for optimal 

balancing optimization is suggested, followed by a comparison between optimization results using enhanced 

objective functions.  

 

 

2. DOUBLE  CRANK­ROCKER  TRI­PLANAR  DYNAMIC  ANALYSIS 

 

In this section, a dynamic analysis of a DCR mechanism is introduced, as well as a 3­dimensional configuration 

and a planar based study of this system is presented. Figure 1 shows the basic configuration of the DCR mechanism 

along with kinematic representation. The geometry of linkages is represented by numbers (1 to 6), the corresponding 

angles between the links (θ, ϒ, φ) are a crank angle, transmission angle and throw angle, respectively. These 

parameters were identified using methods presented in the previous study [11]. In addition, counterweights used 

for force balancing are represented by letters (a, b, c, and d), and joint reaction forces are shown on two planes 

(y­x and z­x).  

Many methods for determining reaction forces acting on a planar four­bar mechanism have been discussed in 

previous studies. However, in this study we adopted the well­known methods mentioned in [12–15]. The essence 

of these studies was to apply the theory of the system’s virtual work to find all the forces acting on different linkages 

which are the result of summing up of external forces, linkages’ internal and transitional momentum forces. The 

A. M. Albaghdadi et al.: Balancing optimization of a double crank-rocker mechanism 287



resultant forces were then translated into equivalent reaction forces acting on the ground pivot. By applying this 

method to the DCR mechanism, the joint shaking forces desired for a balanced system could be expressed by: 

 

 

 

where 𝐹𝑥 and 𝐹y are shaking forces on x­ and y­directions and defined positive according to the coordinate direc ­

tions. Furthermore, 𝐹𝐶 1 and 𝐹𝐶 2
 represent reaction forces by the crank linkages 1 and 4 respectively, on the ground 

pivot O
1
. Similarly, 𝐹𝑅1 and 𝐹𝑅2 are reaction forces by the rocker linkages 3 and 6 respectively, on the ground pivot 

O
2
. However, only forces in the x­ and y­directions were considered since forces acting in the z­direction have a 

negligible value, as indicated in Fig. 2.  

To determine reaction moments, a simplified approach was introduced by extending the planar analysis method 

into a multi­planar analysis and then the resultant moment in each plane was concluded. Also, only moments caused 

by shaking forces were considered, where moments caused by inertia were included in calculations of the reaction 

forces of joints. Moreover, mechanism inertial moments were expected to be highly balanced by means of mech ­

anism duplication. In this study, three moment components which are acting in three planes (y­x, z­x and y­z) were 

considered, namely 𝑀𝑧 , 𝑀𝑦 and 𝑀𝑥 respectively, and they could be found by calculating moments at point G that 

mediate ground pivots on the z­x plane, Fig. 1. Assuming a clockwise moment as the positive direction in balancing 

this mechanism, the calculations to find the total moment 𝑀
𝑧
 resulting from forces acting on the z­x plane are 

presented by: 
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    (b)

    (a)     (c)

    (d)

Fig. 1. Configuration and dynamic analysis of DCR mechanism: 3D configuration (a), kinematic scheme (b), plan view y­z (c), and 

plan view z­x (d).

𝐹𝑥 =  𝐹𝐶2𝑥 + 𝐹𝑅1𝑥−(𝐹𝐶1𝑥 + 𝐹𝑅2𝑥 )   ,                                                   

𝐹𝑦 =  𝐹𝐶1𝑦+𝐹𝑅1𝑦 − (𝐹𝑅2𝑦 + 𝐹𝐶2𝑦)   ,                                                  

,                                                           (1)

,                                                          (2)

𝑀𝑧 =
𝑂1𝑂2

2  × (𝐹𝐶1𝑦 − 𝐹𝐶2𝑦 + 𝐹𝑅1𝑦 − 𝐹𝑅2𝑦) ,                                            ,                                                   (3)



 

where 𝑂
1
𝑂

2
 is the distance between ground pivots of the DCR mechanism. Similarly, the moment 𝑀𝑦 at point G 

can be found by: 

 

 

 

where 𝐴
1
𝐴

2
 is the space distance between both the 1st and the 2nd DCR mechanism components. And for the plane 

y­z, the moment 𝑀𝑥 caused by shaking forces in the y­direction can be expressed by: 

 

 

  

As suggested earlier, the effect of the shaking force 𝐹𝑧 was not considered due to negligible values. Moments 

acting on an unbalanced system are shown in Fig. 3, indicating the dominance of the shaking moment 𝑀𝑧 compared 

to 𝑀𝑥 and 𝑀𝑦. 

 

 

3. OPTIMIZATION  PROCESS 

 

Previously, an optimization study based on a planar dynamic analysis was discussed and validated for balancing a 

DCR mechanism [10]. In this study, the aforesaid method was adopted and introduced to investigate the 

effectiveness of implementing the three­dimensional dynamic approach. Usually, the optimization process starts 

with identifying the system components, system constraints, design variable and objective function [16]. As there 
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Fig. 2. Crank and rocker shaking forces.

𝑀𝑦 =
𝐴1𝐴2

2 × (𝐹𝐶1𝑥 + 𝐹𝐶2𝑥 − 𝐹𝑅1𝑥 − 𝐹𝑅2𝑥)  ,                                           ,                                                   (4)

 𝑀𝑥 = 𝐴1𝐴2
2 × (𝐹𝑅1𝑦 + 𝐹𝑅2𝑦 − 𝐹𝐶1𝑦 − 𝐹𝐶2𝑦) .                                            .                                                   (5)

Crank forces

Rocker forces

Time (s)

Time (s)



are many different approaches to identify the desired objective functions, in this study a practical approach was 

suggested to present an effective objective function based on studying the impact of the sub­components of dynamic 

shaking forces and shaking moments. For the DCR mechanism, it was desired to achieve better results when 

performing optimization on such systems. Thus, two­step identification of different objective functions was 

implemented – the first step was based on analysing the shaking forces and moments acting on this mechanism, 

and then the second step was to compare the results obtained from the first step. The functions which contributed 

to the best results were selected for the optimization process. The elements considered for the optimization objective 

functions (OFs) were forces presented in the equations (1)–(4). Introducing the root mean square (RMS) of the 

total forces led to the following expression [17,18]: 

 

 

 

 

The expression for the RMS of the moments shown in (3) and (4) is represented by: 

 

 

 
 

First, each of the equations (1)–(7) was individually utilized for optimization process as an objective function 

(OF), and then a new OF that introduced a combination of the best force and moment OF was introduced to test all 

the options that elevated the optimization process. To decide on the best OF, a comparison between balanced and 

unbalanced (UB) mechanism values is presented using a balancing effect index BI which was introduced by [19]: 

 

 

 

The idea was to choose the best performance OF based on shaking forces and combine it with the best results 

of the shaking moment based OF to enhance the optimization process. The root mean square (RMS), maximum 

(MAX) and balancing effect index (BI), the results of the preliminary optimization process of different OFs on the 

system’s shaking force components (i.e., 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑡) are presented in Table 1. The optimization process was 

performed using commercial software MSC ADAMS®. 

Based on these results, it can be noticed that the OF that has the best BI in terms of shaking forces reduction is 

the equation representing the total shaking forces 𝐹𝑡 in (6). Although the BI results for the force component 𝐹𝑥  and 

𝐹𝑦 are better, the BI value of 𝐹𝑡 shows the best total reduction, which gives an indication of force component 

cancellation. At the same time, the shaking moment OF using 𝑀𝑧 also gives better optimization for the total forces 

present in the system than that of 𝑀𝑡 , while 𝑀𝑥 and 𝑀𝑦 show higher BI values in shaking forces. Similarly, Table 2 

presents RMS, MAX, and BI values of different optimization OFs on the system’s shaking moments. 
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Fig. 3. Total shaking moment.

𝑅𝑀𝑆 (𝐹𝑡) = √
1
𝑛 ∑ 𝐹𝑥𝑖

2 + 𝐹𝑦𝑖
2

𝑛

𝑖
           .                                                     .                                                                  (6)

𝑅𝑀𝑆 (𝑀𝑡) = √
1
𝑛 ∑ 𝑀𝑦𝑖

2 + 𝑀𝑧𝑖
2 + 𝑀𝑋𝑖

2
𝑛

𝑖
         .                                            .                                                        (7)

𝐵𝐼 =  
𝑀𝐴𝑋 𝑜𝑟 𝑅𝑀𝑆 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚

𝑀𝐴𝑋 𝑜𝑟 𝑅𝑀𝑆 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑢𝑛𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑚𝑒𝑐ℎ𝑎𝑛𝑖𝑠𝑚          .                     .                                    (8)

Time (s)

Shaking moment components

RMS

RMS

BI
 MAX

 MAX

 RMS

 RMS



Using the same concept through the comparison of results, the objective function utilizing 𝑀𝑡  resulted in the 

best BI for reducing shaking moments, indicating that it is the best at the total system’s moment reduction. In 

addition, the objective function of the force component 𝐹𝑦 also yielded better results than 𝐹𝑡 OF in balancing the 

system’s shaking moments. Hence, based on the preliminary optimization results shown, it can be decided on the 

following options as an objective function to enhance the balancing process. These options are: 
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Table 1. RMS, MAX and BI results of shaking force components

 

 

 

 

 

 

 

 

 

 

 

OF 𝐹𝑥 𝐹𝑦 𝐹𝑡 
RMS MAX RMS MAX RMS MAX 

 UB 2837.65 4340.96   787.55 1316.12 2347.34     3430.60 
𝐹𝑥     92.29   172.96   318.54   487.94   341.84       659.92 
BI       0.03       0.04       0.40       0.37       0.15           0.19 
𝐹𝑦   268.37   449.54   190.03   350.42   216.86       505.17 
BI       0.09       0.10       0.24       0.27       0.09           0.15 
𝐹𝑡   258.77   350.42   265.53   444.09   238.78       459.06 
BI       0.09       0.08       0.34       0.34       0.10           0.13 
𝑀𝑥 2841.12 4013.47 1277.72 2562.64 2380.25 430743.00 
BI       1.00       0.92       1.62       1.95       1.01       125.56 
𝑀𝑦 2998.64 4529.70 1194.90 2318.93 2673.80     4841.93 
BI       1.06       1.04       1.52       1.76       1.14           1.41 
𝑀𝑧   195.21   350.16   238.41   386.83   253.83       536.90 
BI       0.07       0.08       0.30       0.29        0.11           0.16 
𝑀𝑡   578.13   785.24   788.15 1268.64    748.15     1079.54 
BI       0.20       0.18       1.00        0.96        0.32           0.31 

 

Table 2. RMS, MAX, and BI results of shaking moment components

 OF 𝑀𝑥 𝑀𝑦 𝑀𝑧 𝑀𝑡 
RMS MAX RMS MAX RMS MAX RMS MAX 

 UB 1.29E+05 3.63E+05 1.27E+05 2.67E+05 2.61E+06 3.50E+06 2.59E+06 3.42E+06 
𝐹𝑥 2.30E+05 1.88E+05 3.03E+05 5.82E+05 5.90E+06 8.66E+06 5.96E+06 8.60E+06 
BI 1.78 0.52 2.39 2.18 2.26 2.47 2.30 2.51 
𝐹𝑦 2.86E+05 4.53E+05 3.75E+05 7.48E+05 1.14E+06 1.65E+06 1.26E+06 1.92E+06 
BI 2.22 1.25 2.95 2.80 0.44 0.47 0.49 0.56 
𝐹𝑡  2.27E+05 3.55E+05 3.06E+05 6.19E+05 3.15E+06 4.61E+06 3.14E+06 4.51E+06 
BI 1.76 0.98 2.41 2.32 1.21 1.32 1.21 1.32 
𝑀𝑥 1.28E+05 2.20E+05 1.28E+05 2.64E+05 2.59E+06 3.48E+06 2.57E+06 3.34E+06 
BI 0.99 0.61 1.01 0.99 0.99 0.99 0.99 0.98 
𝑀𝑦 1.35E+05 2.29E+05 1.23E+05 2.24E+05 5.02E+06 7.13E+06 5.06E+06 7.10E+06 
BI 1.05 0.63 0.97 0.84 1.92 2.04 1.95 2.08 
𝑀𝑧 2.50E+05 4.03E+05 3.36E+05 6.57E+05 6.83E+03 1.32E+04 5.00E+05 9.22E+05 
BI 1.94 1.11 2.65 2.46 0.003 0.004 0.19 0.27 
𝑀𝑡 1.56E+05 2.85E+05 2.15E+05 4.01E+05 3.14E+04 4.97E+04 3.22E+05 5.63E+05 
BI 1.21 0.79 1.69 1.50 0.01 0.01 0.12 0.16 

𝑂𝐹1: min  (𝐹𝑡 + 𝑀𝑡)                                                                     
𝑂𝐹2: min  (𝐹𝑡 + 𝑀𝑧)                                                                     
𝑂𝐹3: min  (𝐹𝑦 + 𝑀𝑡)                                                                     
𝑂𝐹4: min  (𝐹𝑦 + 𝑀𝑧)                                                                     

𝑂𝐹5: min  (𝐹𝑡 + 𝐹𝑦 + 𝑀𝑡 + 𝑀𝑧)                                                         

                                                    (9)

                                                   (10)

                                                   (11)

                                                   (12)

.                                                            (13)

 OF1:

 OF2:

 OF3:

 OF4:

 OF5:

, 

, 

, 

,



 

                 NA – not applicable. 

 

Referring to Fig. 1, the model of the DCR mechanism has the properties listed in Table 3. The crank angular 

speed was kept constant at 2000 rpm with no external forces or moments acting on this mechanism. 

The design variables considered in the optimization process are introduced in Table 4. Four counterweight 

masses (CW
a,b,c,d

) and their corresponding positions (D
a,b,c,d

) were utilized, the initial values were arbitrary selected. 

 

 

4. RESULTS  AND  DISCUSSION 

 

In this study, a new approach was applied to study the effect of different optimization parameters on reducing the 

shaking forces and moments of a DCR mechanism. The objective functions (9)–(13) were used to perform the 

optimization process where the identified design variables were counterweight masses and positions. There were 

four counterweights placed along crank and rocker linkages (a, b, c, and d), see Fig. 1. For the five cases using 

these objective functions in the optimization process introduced in Section 3, the results are shown in Fig. 4.  

Shaking forces are presented to compare the results between different objective functions (OF1, OF2, OF3, 

OF4, and OF5) and the unbalanced (UB) initial status of the DCR mechanism.  

The results of the shaking moment components 𝑀𝑧 , 𝑀𝑦 , 𝑀𝑧  and 𝑀𝑡 from the five cases are compared and 

plotted in Fig. 5. 

The optimization results are presented in Table 5, which indicates the different RMS values of forces and 

moments resulting from each objective function, as well as the percentage (%) of reduction in these parameter 

values. 

For better reduction in shaking forces, OF1 and OF3 showed higher reduction percentages where 𝐹𝑥 , 𝐹𝑦 and 

𝐹𝑡, were reduced by about 96%, 67% and 89%, respectively. These were followed by OF2, which reduced the total 

forces 𝐹𝑡 by about 88%. However, OF4 and OF5 showed the least reduction of these forces. Moreover, in the case 

of OF4, an increment of the force component 𝐹𝑦 was recorded by almost 69%, and the incremental values were 

preceded by the negative sign.  
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Table 3. DCR mechanism specifications

 

 

 

 

 

 

Part Length (mm) Mass (kg) Moment of inertia IXX, IYY, IZZ, 
(kg•mm2) 

Crank linkages  
  1, 4   70.7 2.920 1.2E+04, 7071.3, 5746.6 

Coupler  
  linkages 2, 5 282.8 1.958 1.6E+04, 1.6E+04, 319.5 

Rocker  
  linkages 3, 6 337.5           2.41 3.04E+04, 3.02E+04, 395.5 

𝑂1𝑂2  470.9 NA NA 
𝐴1𝐴2        100 NA NA 

𝑂
�
𝑂

�

𝐴
�
𝐴

�

 

Table 4. System design variables

 

 

 

 

Design 
variables 

Initial value Lower limit Upper limit 

CWa (kg) 2        0.01   20 
CWb (kg) 4        0.01   20 
CWc (kg) 3        0.01   20 
CWd (kg) 5        0.01   20 
Da,b (mm) 0        0 142 
Dc,d (mm) 0        0 354 

  70.7 2.920 1.2E+04, 7071.3, 5746.6 

282.8 1.958 1.6E+04, 1.6E+04, 319.5 

337.5           2.41 3.04E+04, 3.02E+04, 395.5 

(kg∙mm2)



Similarly, the total shaking moments caused by this mechanism were highly reduced by OF5 with the reduction 

of 95%, followed by OF1 and OF3 where almost the same results were obtained; and the reduction in the total 

shaking moments components 𝑀𝑡 was about 83%. However, the results of the moment components 𝑀𝑥 and 𝑀𝑦  

increased in all cases, and the values were preceded by the negative sign. This could be explained by many reasons 

such as the dominancy of 𝑀𝑧 as a higher moment acting physically on the system and a larger value presented 

numerically in the objective function. In addition, the optimization process tends to reduce the shaking effect, and 

this can be achieved through the counteraction of moment component, even though this might cause increments 

in the final value of each component. 
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Fig. 4. Unbalanced (UB) and balanced shaking force components for the suggested OF.  
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Fig. 5. Unbalanced (UB) and balanced shaking moment components for the suggested OF. 
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5. CONCLUSIONS 

 

This paper has discussed the impact of different optimization parameters when performing tri­planar balancing 

enhancement of a DCR mechanism. This system was expected to have better balancing due to its duplicated 

mechanism, expected to overcome inertial moments caused by its linkages. Therefore, balancing optimization was 

introduced to minimize other factors causing system vibration, namely reaction forces and moments caused by 

relevant inertial forces.  

A simplified tri­planar dynamic analysis of this mechanism was introduced and presented as a planar mechanism 

problem.  The DCR mechanism model runs with the constant speed of 2000 rpm and has the design variables 

identified as the masses and positions of the attached counterweights. An approach of choosing the best objective 

function was presented to solve the optimization problem, and this led to five distinct objective functions (i.e., OF1, 

OF2, OF3, OF4, and OF5), which were decided based on the balancing effect index BI.  

The outcome results show that the reduction percentages related to OF1 and OF3 were the best in eliminating 

all shaking forces and the moment component 𝑀𝑧 as these caused an increase in the moment component 𝑀𝑦 by 

almost double (the minus sign of reduction percentage represents an increase in the respective value). Likewise, 

OF2 showed better results in reducing the total shaking forces than OF5, but there was less performance in shaking 

moment reduction. The overall results of OF4 were less effective in reducing shaking force and shaking moment 

components than other objective functions.  
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