ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On (mn)-semiprime submodules; pp. 260–267
PDF | 10.3176/proc.2021.3.05

Authors
Ayten Pekin, Suat Koç, Emel Aslankarayiğit Uğurlu
Abstract

This paper aims to introduce a new class of submodules, called (mn)-semiprime submodule, which is a generalization of semiprime submodule. Let M be a unital A-module and m, n ∈ N. Then a proper submodule P of M is said to be an (mn)-semiprime submodule if whenever am P for some a ∈ Ax ∈ M, then an P. In addition to giving many characterizations and properties of this kind of submodules, we also use them to characterize von Neumann regular modules.

References

1. Anderson, D. D., Arabaci, T., Tekir, Ü .and Koç, S. On S-multiplicationmodules. Commun. Algebra, 2020, 
48(8), 3398–3407.
https://doi.org/10.1080/00927872.2020.1737873

2. Anderson, D. F. and Badawi, A. On (mn)-closed ideals of commutative rings. J. Algebra Appl., 2017, 16(01), 1750013.
https://doi.org/10.1142/S021949881750013X

3. Anderson, D. D., Chun, S. and Juett, J. R. Module-theoretic generalization of commutative von Neumann regular rings. Commun. Algebra, 2019, 47(11), 4713–4728.
https://doi.org/10.1080/00927872.2019.1593427

4. Anderson, D. D. and Winders, M. Idealization of a module. J. Commut. Algebra, 2009, 1(1), 3–56.
https://doi.org/10.1216/JCA-2009-1-1-3

5. Atiyah, M. F. and MacDonald, I. G. Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass- London-Don Mills, Ont., 1969.

6. Azizi, A. Weakly prime submodules and prime submodules. Glasgow Math. J., 2006, 48(02), 343–346.
https://doi.org/10.1017/S0017089506003119

7. Badawi, A. On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc., 2007, 75(3), 417–429.
https://doi.org/10.1017/S0004972700039344

8. Barnard, A. Multiplication modules. J. Algebra, 1981, 71(1), 174–178.
https://doi.org/10.1016/0021-8693(81)90112-5

9. Beddani, C. and Messirdi, W. 2-prime ideals and their applications. J. Algebra Appl., 2016, 15(03), 1650051.
https://doi.org/10.1142/S0219498816500511

10. Çeken Gezen, S. On M-coidempotent elements and fully coidempotent modules. Commun. Algebra, 2020, 48(11), 4638–4646.
https://doi.org/10.1080/00927872.2020.1768266

11. Ebrahimpour, M. and Mirzaee, F. On ϕ-semiprime submodules. J. Korean Math. Soc., 54(4), 1099–1108.

12. El-Bast, Z. A. and Smith, P. F. Multiplication modules. Commun. Algebra, 1988, 16(4), 755–779.
https://doi.org/10.1080/00927878808823601

13. Huckaba, J. A. Commutative Rings with Zero Divisors. Db Marcel Dekker, New York, NY, 1988.

14. Jayaram, C. and Tekir, Ü.von Neumannregularmodules. Commun. Algebra, 2018, 46(5), 2205–2217.
https://doi.org/10.1080/00927872.2017.1372460

15. Jayaram, C., Tekir, Ü. and Koc, S. Quasi regular modules and trivial extension. Hacettepe J. Math. Stat., 2021, 
50(1), 120–134. 
https://doi.org/10.15672/hujms.613404

16. Koç, S., Tekir, Ü. and Ulucak, G. On strongly quasi primary ideals. Bull. Korean Math. Soc., 2019, 56(3), 729–743. 

17. Koç, S. On strongly π-regular modules. Sakarya University Journal of Science, 2020, 24(4), 675–684.

18. Lee, S. C. and Varmazyar, R. Semiprime submodules of a module and related concepts. J. Algebra Appl., 2019, 18(08), 1950147.
https://doi.org/10.1142/S0219498819501470

19. Lee, T. K. and Zhou, Y. Reduced modules. Rings, modules, algebras and abelian groups. Lecture Notes in Pure and Appl. Math., 2004, 236, 365–377.
https://doi.org/10.1201/9780824750817.ch29

20. Nagata, M. Local Rings. Interscience Publishers, New York, NY, 1962.

21. Saraç, B. On semiprime submodules. Commun. Algebra, 2009, 37(7), 2485–2495.
https://doi.org/10.1080/00927870802101994

22. Von Neumann, J. On regular rings. Proc. Natl. Acad. Sci. of the U.S.A., 1936, 22(12), 707–713. 
https://doi.org/10.1073/pnas.22.12.707

Back to Issue