This paper aims to introduce a new class of submodules, called (m, n)-semiprime submodule, which is a generalization of semiprime submodule. Let M be a unital A-module and m, n ∈ N. Then a proper submodule P of M is said to be an (m, n)-semiprime submodule if whenever amx ∈ P for some a ∈ A, x ∈ M, then anx ∈ P. In addition to giving many characterizations and properties of this kind of submodules, we also use them to characterize von Neumann regular modules.
1. Anderson, D. D., Arabaci, T., Tekir, Ü .and Koç, S. On S-multiplicationmodules. Commun. Algebra, 2020,
48(8), 3398–3407.
https://doi.org/10.1080/00927872.2020.1737873
2. Anderson, D. F. and Badawi, A. On (m, n)-closed ideals of commutative rings. J. Algebra Appl., 2017, 16(01), 1750013.
https://doi.org/10.1142/S021949881750013X
3. Anderson, D. D., Chun, S. and Juett, J. R. Module-theoretic generalization of commutative von Neumann regular rings. Commun. Algebra, 2019, 47(11), 4713–4728.
https://doi.org/10.1080/00927872.2019.1593427
4. Anderson, D. D. and Winders, M. Idealization of a module. J. Commut. Algebra, 2009, 1(1), 3–56.
https://doi.org/10.1216/JCA-2009-1-1-3
5. Atiyah, M. F. and MacDonald, I. G. Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading, Mass- London-Don Mills, Ont., 1969.
6. Azizi, A. Weakly prime submodules and prime submodules. Glasgow Math. J., 2006, 48(02), 343–346.
https://doi.org/10.1017/S0017089506003119
7. Badawi, A. On 2-absorbing ideals of commutative rings. Bull. Aust. Math. Soc., 2007, 75(3), 417–429.
https://doi.org/10.1017/S0004972700039344
8. Barnard, A. Multiplication modules. J. Algebra, 1981, 71(1), 174–178.
https://doi.org/10.1016/0021-8693(81)90112-5
9. Beddani, C. and Messirdi, W. 2-prime ideals and their applications. J. Algebra Appl., 2016, 15(03), 1650051.
https://doi.org/10.1142/S0219498816500511
10. Çeken Gezen, S. On M-coidempotent elements and fully coidempotent modules. Commun. Algebra, 2020, 48(11), 4638–4646.
https://doi.org/10.1080/00927872.2020.1768266
11. Ebrahimpour, M. and Mirzaee, F. On ϕ-semiprime submodules. J. Korean Math. Soc., 54(4), 1099–1108.
12. El-Bast, Z. A. and Smith, P. F. Multiplication modules. Commun. Algebra, 1988, 16(4), 755–779.
https://doi.org/10.1080/00927878808823601
13. Huckaba, J. A. Commutative Rings with Zero Divisors. Db Marcel Dekker, New York, NY, 1988.
14. Jayaram, C. and Tekir, Ü.von Neumannregularmodules. Commun. Algebra, 2018, 46(5), 2205–2217.
https://doi.org/10.1080/00927872.2017.1372460
15. Jayaram, C., Tekir, Ü. and Koc, S. Quasi regular modules and trivial extension. Hacettepe J. Math. Stat., 2021,
50(1), 120–134.
https://doi.org/10.15672/hujms.613404
16. Koç, S., Tekir, Ü. and Ulucak, G. On strongly quasi primary ideals. Bull. Korean Math. Soc., 2019, 56(3), 729–743.
17. Koç, S. On strongly π-regular modules. Sakarya University Journal of Science, 2020, 24(4), 675–684.
18. Lee, S. C. and Varmazyar, R. Semiprime submodules of a module and related concepts. J. Algebra Appl., 2019, 18(08), 1950147.
https://doi.org/10.1142/S0219498819501470
19. Lee, T. K. and Zhou, Y. Reduced modules. Rings, modules, algebras and abelian groups. Lecture Notes in Pure and Appl. Math., 2004, 236, 365–377.
https://doi.org/10.1201/9780824750817.ch29
20. Nagata, M. Local Rings. Interscience Publishers, New York, NY, 1962.
21. Saraç, B. On semiprime submodules. Commun. Algebra, 2009, 37(7), 2485–2495.
https://doi.org/10.1080/00927870802101994
22. Von Neumann, J. On regular rings. Proc. Natl. Acad. Sci. of the U.S.A., 1936, 22(12), 707–713.
https://doi.org/10.1073/pnas.22.12.707